The Evolution of the Human Brain
The evolution of the human
brain was one of the most significant developments in the history of life on
this planet. It was one of the unintended, unpredictable consequences of the
evolution of sentience in the animal kingdom perhaps 600-650 million years
earlier. The evolution of the human brain, by inserting advanced consciousness
into the rest of the natural world, caused a new set of randomly expressible
variables to come into being. By giving a particular animal—one that walked
upright and possessed true hands—an advanced level of self-awareness in
conjunction with powerful cognitive abilities, the evolution of the human brain
drastically altered the “balance of power” on this planet. The evolution of a
brain from which consciousness could emerge in this upright animal laid the
basis for the advanced cultures and complex societies humans have constructed,
and all the myriad, incalculable consequences that have flowed from them.
Moreover, the evolution of a brain in which advanced cognitive processes interact with, and have a reciprocal relationship with, autonomic regulatory functions and emotional responses, has created a psychology of vast complexity. The psychological complexity generated by the physiology of the human brain is such that it is virtually impossible to trace all the origins of specific human behaviors in particular situations. There are general responses that can be predicted, of course, but a detailed analysis of human motivation is still beyond our grasp. The brain holds memories, processes and reacts to sensory stimuli, formulates judgments about the world, imagines possibilities, stores knowledge and skills, creates a life narrative, controls crucial physical movements, and weaves all of these traits into a complex whole, an individual’s personal identity or “personality”. The brain, therefore, allows for the emergence, in every human, of a self, but it is a self which may be forever beyond our full understanding.
It is the possession of a
highly complex brain, therefore, that came to define those fully upright
primates whose story started so long ago (from our perspective) somewhere in
the great arc between southern and eastern Africa. This complex brain has
retained features common to many of the more “primitive” animals in the history
of life. It has evolved in a piecemeal fashion, an odd combination of the
ancient, the more recent, and the strikingly modern. We need to remember that
it is, after all, flesh and blood, a collection of neurons, glial cells, blood
vessels, neurotransmitters, and cerebrospinal fluid, a gelatinous mass that
averages 1350cc in volume and about one and a third kilograms in weight. A
brain of this type creates the human frame of reference. From a brain of this
type emerges the human animal’s only connection with the “real” reality. From the
interactions of brains of this type have emerged the contours of human life. And
from such a brain has emerged our ability to conduct an inquiry into the nature
of ourselves as beings, a project which may never be finished.
We should therefore begin by
noting that the evolution of the human brain has not been completely elucidated, by any means. There are still major
areas in which our knowledge is scanty. This discussion, therefore, is based on
the evidence we have now, with the understanding that new findings may very
well supersede this evidence.
Sentience as an Emergent Property of Energy-Matter
In Volume One I stated that
the emergence of the conscious from the unconscious was perhaps the most
remarkable thing that had ever occurred. But how can the ability to sense the
environment, the necessary precursor to the evolution of consciousness, arise
out of a world completely dominated by insensate energy-matter? At the most
basic level, the distinction between sentient and insentient is a subtle one. Simple
exchanges of energy, small shifts of physical conditions from one state to
another, are all we would see if we could examine sentience’s deep origins. And
as is the case with all aspects of reality, sentience is an emergent
phenomenon, made possible by the tendency of energy-matter to self-organize and
bring about the emergence of higher-levels of organization. Self-organization
is facilitated by the existence of electrical charge, one of the physical features
of most energy-matter. (Electromagnetism is, after all, one of the four
fundamental forces of nature.) It is electricity that makes possible
“signaling” or “messaging” between and within units of energy-matter. It is the
ability to transmit “signals” that lies at the base of the evolution of nervous
systems. As we have already seen, this ability can begin with something as
basic as a simple change in the electric potential of a charged particle. (See
below.)
As life evolved out of
primitive metabolic processes and simple forms of replication, units of energy-matter
within some living things were able to send basic signals to each other, governed
by the characteristics of electricity. The Law of Whatever Works then came into
play. Synergistic tendencies made possible the growth and increasing frequency
of such signaling, as feedback loops and reciprocating processes were
reinforced. Since this signaling facilitated reproductive success, it became
more and more common. The evolution of a full-blown nervous system out of these
basic processes required a whole series of emergences, involving the
co-evolution of many different components.
As we saw in Volume One, tens
of millions of years elapsed between the evolution of the earliest animals and
the emergence of chordates. There were no doubt many dead ends in the unfolding
of the story of nervous system evolution. But there was no inherent barrier
that prevented the larger course of this unfolding. That it ultimately produced
human consciousness was the end result of the interaction of both random chance
and physical possibility.
Again: The Function of a Nervous System
So nervous systems emerged out
of the fabric of physical reality on a small planet with locally favorable
conditions. Why were they useful? In the previous volume, I said that plants
simply respond to the world, whereas animals, to varying degrees, experience
the world and then respond to it. Perhaps I should now modify that statement.
The simpler an animal’s nervous system, the more we might say that it simply
responds to the world rather than experiences it. The more “primitive” animals
lack the capacity to do anything except respond, and the most “primitive”
animals have no nervous system at all. (We might well ask here where the line
between mere response and the higher-order phenomenon of experience lies, or
even if such a line actually exists.)
But regardless of this, the
vast majority of animals possess nervous systems, which come in many, many
varieties and levels of complexity. These animals can detect and react to a
greater range of energies, individual elements, and chemical compounds than
plants or one-celled organisms. In Volume One (pp. 246-248), we briefly
examined the reasons why the possession of a nervous system is selectively
beneficial to animals, beings which are heterotrophic and in the vast majority
of cases, mobile.
The function of a nervous
system is to detect the presence, near or within an animal, of energies,
individual elements, and chemical compounds, especially changes in the
intensity, duration, and quality of such energies, individual elements, and
compounds. The “purpose” of this information is to allow for the modification
and adjustment of an animal’s behavior, if need be, or to simply facilitate
those functions which allow an animal to survive. Such functions would include,
among many, the processing of oxygen for use by the animal, the acquisition of
food (sometimes by engaging in predation), and movement (in the vast majority of animals)
to avoid injury, resist predators, or to engage in mating activity. Nervous
systems are therefore networks for the communication of this information. This
communication is effected by the rapid transmission of electrochemical energy
along natural circuits. So where do we begin our search for the development of
such systems of circuitry? How can we trace the development of the complex
human brain out of the matrix of broader nervous system evolution?
Approaches to the Study of Brain Evolution
In seeking to elucidate the
evolution of the human brain, we will focus on the following areas:
1. The general nature and function of molecules that act as neurotransmitters
or biomediators,
and the presence in the biosphere of the requisite chemical compounds that
comprise them. We will also examine some hypotheses about the origins of
neurotransmitters. Further, we will look into the origin and functions of
neuromodulators and neurohormones, substances which can affect the action of
neurotransmitters.
2. The stimulus-response mechanisms of one-celled organisms and
how these mechanisms became the deep origins of nerve cells in animal life.
3. The evolution of the synapse, the active gap between
nerve cells over which electrochemical signals are transmitted, the development
of which transformed certain kinds of cells into neurons. The nerve cell
is the essential feature of nervous systems. We will look for the steps by
which such cells emerged.
4. The evolution of rudimentary nervous systems. It is, after
all, the action of neurons in conjunction with each other that marks the
operation of nervous systems. The animal kingdom contains a handful of members
with either no nervous systems or very fundamental ones. We will see how these
simple animals helped lay the foundations for the more complex nervous systems
that evolved later.
5. The evolution of the more complex nervous systems of
chordates and vertebrates (in general).
6. The evolution of the mammalian brain, and the ways it built
on the vertebrate brain.
7. The evolution of the primate brain, with an emphasis on
features conserved across the primate line. We will also briefly examine the
principles that appear to govern brain evolution.
8. The emergence of the human brain, with an emphasis on the genetic
changes which allowed for the expansion of the brain in what ultimately became
the hominids. It now appears that the crucial changes happened in the period
between three and a half million and two million years before the present.
9. The increase in encephalization within the hominid line, and
the concomitant increases in brain complexity and neuronal interconnectivity.
We will recapitulate the paleontological evidence that shows the development of
the brain from the animals that stand at the borderline of humanity (such as
the habilines) through the emergence of Homo
sapiens sapiens.
The Evolution of Neurotransmitters, or Biomediators, and Their Presence
in the Biosphere
It would, perhaps, be useful
at this point, to reiterate that about 99% of the chemical composition of
living things is simply various arrangements of carbon, hydrogen, oxygen, and
nitrogen. It is these very simple and very common elements that comprise the
"stuff" of life. All organic compounds are therefore basically
arrangements of these ordinary atoms, occasionally augmented by other elements,
and held together by chemical bonds that rely on electrons being taken or shared.
So we see first that the existence of molecules capable of mediating electrical
charges and sending "messages" is yet another example of an emergent
phenomenon.
To electrochemically transmit
“messages” within them, nervous systems use chemical entities known as neurotransmitters.
In animals, neurotransmitters are found in neurons. (More specifically,
neurotransmitters are contained within small sac-like structures known as
endosomes.) Nerve cells do not physically touch each other. Their signals are transmitted,
as I indicated above, across a gap known as a synapse. The neuron sending a
signal is called the presynaptic neuron. The neuron receiving the signal is
called the postsynaptic neuron. Neurotransmitters are molecules with highly
specific characteristics. A substance is considered a neurotransmitter when (A)
the chemical precursors necessary to synthesize it are in the presynaptic
neuron, (B) the substance is released by electrical stimulation from the
presynaptic neuron (activity which involves the action of calcium ions), and
(C) there must be areas on the postsynaptic neuron present to receive the
substance, areas known as receptors. (Not all substances believed to be
neurotransmitters have been definitively proven to be so.)1 We will
examine the action of neurotransmitters more closely in the next chapter. What
is their origin?
Neurotransmitter-like
substances and their constituent proteins existed prior to the evolution of nervous systems. Moreover, the processes
by which neurotransmitters and their related proteins operate are intimately
related to the rise of multicellularity itself, and these fundamental processes
were already in place when animal life began to develop. While it is true that
neurotransmitters have become greatly elaborated and modified by the evolution
of animal life in general and nervous systems in particular, the fact remains
that they were not novel features of the biosphere at the time neural networks
began to develop. Neural networks used them and repurposed them in ways which
were reproductively advantageous, thereby reinforcing them in a synergistic
way. Interestingly, in a group of single-celled organisms known as choanoflagellates,
we can see evidence that this has happened.
Choanoflagellates are the
closest non-animal relative animals have. Choanoflagellates, of course, have no nervous systems. And yet they
possess proteins which in animals are essential to neural processes. A
particular superfamily of proteins is indispensable in the process of signal
transmission between neurons. Known as soluble
N-ethylmaleimide-sensitive-factor attachment protein receptor or SNARE
proteins, they operate in what is known as a SNARE complex. A particular
protein, Munc18-1, appears to coordinate a SNARE complex. It does so in apparent
conjunction with a protein known as Syntaxin 1. At one time, it was thought
that the structure and function of this complex were unique to neurons, but in
recent years a Munc18-1/Syntaxin 1 complex of similar structure and function
has been found in the choanoflagellate Monosiga brevicollis. In other
words, the origin of modern SNARE complexes may be very ancient, and such
complexes may have been present in the common ancestor of both
choanoflagellates and animals.2 (We should perhaps remind ourselves
that as a general rule, the more widespread a phenomenon is in the living
world, the older it is.)
Another protein essential for
neuronal signaling has been found in the choanoflagellate Salpingoeca rosetta, where it interacts
with a protein typically found in the cell membrane. This protein, known as
Homer, is crucial to postsynaptic functions, among other tasks. The scientists
researching this protein have tentatively concluded that its origin is very
ancient, and like the Munc18-1/Syntaxin complex, it may have existed in the
common ancestor of both animals and choanoflagellates. In their words, it may
have been co-opted to perform its role in neurons.3
Neurotransmitters function by
the processes of secretion. The development of the mechanisms of secretion was
the crucial factor in the rise of this form of communication, and the evolution
of multicellularity was deeply affected by the evolution of secretory
mechanisms. It now appears that SNARE proteins played a significant role in the
growth and diversification of secretory processes. SNARE proteins appear to be
conserved across enormous stretches of time and a huge range of life forms.
Some researchers now believe there were two major changes in the functions of
SNAREs in multicellular beings such as animals. First, as animal life became
more widespread and diverse the number of SNAREs found in endosomes appears to
have increased significantly. Second, the increase in the number of SNAREs
involved in secretory processes may have allowed secretory processes with a
greater range of functions to evolve.4 In short, the method of chemical transport that would
later be used in nervous systems was already beginning to develop before
nervous systems themselves evolved.
Other research has confirmed
the fact that the chemicals being secreted already existed by the time nervous
systems first began to emerge. In a major research paper in 1988, J. C. Venter
(who did pioneering work in sequencing the human genome) and a group of his
colleagues pointed out that the components of intercellular communication, such
as neurotransmitters, hormones, and enzymes, and the proteins we associate with
neurotransmission, have been conserved over hundreds of millions of years.
Venter, et al., further explained that while certain of these molecules existed
in single-celled organisms, adrenergic and cholinergic receptors didn't emerge
until multicellular life forms evolved. [Adrenergic receptors secrete or are activated
by epinephrine or similar chemicals. Cholinergic receptors are activated by
acetylcholine.] In general, what changed over millions of years was not so much
the specific chemical entities themselves but rather the uses to which they
were put, and the patterns of reaction and interaction into which they fell.5
The two important
neurotransmitters GABA (gamma aminobutyric acid) and glutamate are found in a
wide range of animal life other than Homo
sapiens sapiens. They have been detected in insects, varieties of worm, and
non-human mammals. (GABA acts as an inhibitory neurotransmitter, glutamate as
an excitatory one.) GABA and glutamate regulate each other. Further, the genes involved in the action of
glutamate in vertebrates are found in humans, fish, mice, prototheria
("primitive", egg-laying mammals), amphibians, and all the existing
reptiles and birds. The genes are found in different numbers in different life
forms because of such events as the whole genome duplication in vertebrates (one
of two such duplications) which apparently took place some 500 million years
before the present. Some individual genes seem to have been lost after this
event.6
Serotonin is also found widely
among the animals, so much so that some researchers believe the mechanisms of
the serotonergic system may stretch back hundreds of millions of years. As one
team has put it,
Serotonin is an ancient neurotransmitter found throughout the animal
kingdom, indicating an early origin of a nervous system using this
neurotransmitter. More specifically, it suggests that the basic organization of
the central part of the vertebrate serotonergic nervous system may already have
been established in the line of invertebrate ancestors leading up to
vertebrates.7
Intriguingly, the
molecules we usually refer to as neurotransmitters have been found in the plant
world as well. A Russian researcher has put it this way:
Today we have more and more evidence that neurotransmitters, which
participate in synaptic neurotransmission, are multifunctional substances
participating in developmental processes of microorganisms, plants, and
animals. Moreover, their universal roles as signal and regulatory compounds are
supported by studies that examine their role in and across biological kingdoms.
This researcher suggests that
since what we commonly call neurotransmitters are ubiquitous throughout
nature, they should perhaps be called
biomediators, the universal means by which electrochemical signals are
transmitted.8
Another researcher, writing
about the presence of neurotransmitters in plants, has pointed out that no
fewer than 11 different neurotransmitters have been found in them so far,
including melatonin (involved in the regulation of Circadian rhythms),
acetylcholine, GABA, serotonin, and dopamine. Melatonin, for example, may
affect such processes in plants as flowering and root formation. This same
researcher, in conjunction with two others, has identified certain
neuroregulators in plants, (substances such as caffeine and hyperforin that
help regulate mood) and some of the neurotoxins (substances that do damage to
neurons) that plants can sometimes contain, such as beta methylamino-L-alanine
or BMAA. 9 , 10
Catecholamines (epinephrine,
norepinephrine, and dopamine) are crucially important neurotransmitters. The
amino acid tyrosine is necessary for the synthesis of catecholamines. Chemical
pathways necessary for catecholamine synthesis have, in recent years, been
found in plants. The functions of catecholamines in plants are not yet fully
understood, but they may be implicated in protection against insects, in wound
healing, and in protection against fungal invaders.11
Plants also contain endosomes,
and these structures appear to perform crucial functions within them, such as
helping the movement of material into plant cells (endocytosis), hormone
regulation, and the physiology of roots.12 Some researchers now
hypothesize that the potential for the evolution of endosomes existed in the
common ancestors of animals, plants, and fungi, and that these structures
evolved in parallel.13
What are some of the current
hypotheses regarding the evolution of these biomediators? One group of
researchers has hypothesized that acetylcholine and GABA were originally
involved in cellular metabolic processes. These metabolic processes, the
researchers postulate, caused the flow of these particular molecules out of
cells, a flow that acted as a kind of signal. This signal may have evolved into
a paracrine signal. Paracrine signals
cause changes in neighboring cells, changes that can alter their functions.14
Nervous systems are driven by complex patterns of paracrine signaling.
Another researcher has
hypothesized that neurotransmitters evolved by two separate and parallel routes. In this conjecture, the first
method was through chemical reactions that produced amines, purines, and amino
acids, the second through the conversion of neuropeptides. (This researcher
also points out that known neurotransmitters have been detected in prokaryotes,
as well.) In the case of neurotransmitters based on amino acids, purines, and
amines, the molecules for them either already exist or their synthesis is based
on simple and well-understood reactions. The neuropeptide-based
neurotransmitters seem to be genetically produced and modified after they have
been chemically translated. 15
Key roles in neurotransmission
also belong to neuromodulators and neurohormones. Neuromodulators (such as
somatostatin) can increase or lessen the effects of neurotransmitters, and are
not necessarily released at synapses. Both neuromodulators and neurohormones
can exert significant effects at points distant from their release.16
Recent research has confirmed that the
molecules that control neurotransmitters, neuromodulators, and neurohormones
existed prior to the evolution of nervous systems themselves, and that their
evolution was facilitated by the repurposing of gene function, gene duplication
(see below), and the loss of certain genes. More specifically, a major role in
neurotransmission is played by what are known as G-protein-coupled
receptors (GPCRs). GPCRs are receptors that exist on the surface of the
cells of eukaryotes. They perform a huge number of tasks in the human body. They
appear to have arisen early in the history of animal life, and neuromodulation
depends on them. Both invertebrates and vertebrates inherited the signaling
mechanisms used by neuromodulators from a common bilaterian ancestor.
Nonetheless, certain neuromodulators affecting animal behavior appear to have
evolved in parallel to each other.17, 18
So, the chemical agents involved
in neurotransmission and the proteins necessary to their functions have been
found throughout the world of living things, and they have existed for a very
long time, although their use in nervous systems has modified them. The
biological “machinery” that allowed for the basic function of neurotransmitters
existed before nervous system-based neurotransmitters themselves came into
being. The chemical prerequisites were already in place. As is so often the
case in the living world, unconscious evolutionary processes used existing physical
entities in a variety of ways.
Stimulus-Response Behavior in Single-Celled Organisms
As I pointed out in Volume
One, Steven Rose, in his 1976 study of the brain, addressed the question of
nervous system origins. He discussed the tendency of even one-celled organisms
to exhibit “behaviors”. In explaining the response of bacteria to the presence
of nutrients in their immediate environment, he pointed out how the structures
on the surfaces of bacteria known as chemoreceptors
must sense in some way the location of the nutrient in relation to the
bacterium and cause it to move toward the food source. This action, he pointed
out, could be effected by a change in the electric potential of the cells.19
The evolutionary advantage of such a property is obvious, and in the operation
of this simple electrochemical system of “communication” we see, perhaps, the
deep origin of the electrochemical operation of our own highly advanced nervous
systems.
Since the 1970s, research on
this subject has greatly expanded our understanding. We know that both
prokaryotic and eukaryotic cells exhibit chemotaxis,
the ability to move toward a favorable environment (or away from a noxious one)
in response to some sort of chemical stimulus.
John Morgan Allman points to the example of Escherichia coli in this regard:
E. coli has more than a dozen different types of receptors on its surface.
Some are specialized for the detection of different nutrients, such as
particular types of sugar, which provide energy, or amino acids, which are the
building blocks of proteins; other receptors are responsive to toxins, such as
heavy-metal ions.20
Recent research on chemotaxis
has determined that there are three primary mechanisms that control such
movement. Among these mechanisms is intracellular biochemical signaling that
enables the cell to respond to stimuli in its environment. Since organisms like
bacteria move through the use of flagella, these biochemical signals control the
function of these appendages. Most strains of motile bacteria have chemosensory
processes that seem to be governed by similar types of proteins, suggesting a
phylogenetic relationship among them.21
In the chapter on
single-celled organisms in Volume One we briefly examined the phenomenon of ion
channels, complexes of proteins on a membrane surface that make it possible for
charged particles to cross through the membrane. The phospholipid bilayers
(which form the structure of the cell membrane) themselves are evolved to form
a barrier to water-friendly, charged molecules. Ion channels, in effect, are a
kind of insulation for charged particles, giving them a pathway through
otherwise hostile territory. Not everything about their structure is yet
understood, but five different kinds of them have been identified.22 (Ion
channels also frequently interact with GPCRs, and are often modulated by them.)23
In 2005 a team of researchers contended that the evolution of simple kinds of
ion channels that could carry out complex functions may have occurred early in
the history of cellular life, and that there are proteins associated with the
construction of ion channels common to all three domains of living things. They
argue that the different kinds of ion channels have enough “universal” features
that they could have readily adapted themselves to a number of different
functions during the course of evolution.24
A researcher at the University
of California has presented evidence that voltage-gated sodium (Na) permeable ion
channels, or Nav, existed before the evolution of neurons themselves. (Such ion
channels are what allow electrical stimulation in both animals and a wide
variety of one-celled eukaryotes.) He has concluded that these channels existed
in the common ancestor of choanoflagellates and animals, and later played a major
role in the evolution of advanced electrically-based signal transmission in
animal life.25
Single-celled organisms
therefore developed receptors, areas on the surface of their membranes that chemically
detected their external environment, and along with this they possessed the
ability to transmit signals within themselves. It was their ion channels that
facilitated electrical signal conduction. Some researchers caution us here,
reminding us that there is not necessarily a straight, linear progression from
chemosensory abilities to neurotransmission. But the fact remains that
single-celled organisms can indeed "sense" the world and
"communicate" information about it. These features are the sine qua non of nervous system function.
Neurons in the human nervous system are covered with ion channels for sodium
and potassium, as we will see. It is through the polarization and
depolarization of these channels that neurons convey "messages".
Modern human neurons are the descendants of those first cells that had the
ability to use electricity to "communicate".
The Evolution of the Synapse and the Neuron
Cells, as we saw in Volume One
of this work, have existed in some form for at least 3.4 billion years. Cells
have an inherent ability to use electricity to "communicate" both
within themselves and with other cells, and possess ion channels which
facilitate this purpose. And, as we saw above, the proteins and biomediators
required for neurotransmission existed in the biosphere long before there were
any nervous systems whatsoever.
Then, somewhere between 650
million and 600 million years ago, the ability of cells to transmit
"information" to each other yielded, as we will see below, the first
neural networks and the first true nervous systems. This epic emergent phenomenon
was made possible by the evolution of the synapse. A true synapse requires the
proper chemical environment and that environment's corresponding neural
structures. Neurons communicate both by chemical signal and electrical signal,
but these means are so intimately related to each other that we can safely call
such communication electrochemical. It was the evolution of the synapse that
transformed certain kinds of cells into true neurons, although the earliest synapses
and neurons were far less elaborate than those possessed by humans.
As we have already seen, the
protein structures necessary for neurotransmission have been found in
choanoflagellates, and recent research has confirmed the strong likelihood that
these proteins were in the common ancestors of both these single-celled beings
and the animals.26 The search for the evolution of these proteins
has led scientists to investigate their presence in simple animals. Some researchers
working on this issue have focused on animals from the phylum Porifera, the
sponges. As you will recall, sponges are the oldest animals for which we have
any fossils, and they quite possibly lie at the very foundation of the animal
kingdom itself. (Many scientists, however, contend that the animals at the base
of Kingdom Animalia were either the placozoans, the jellyfish, or the
ctenophores, not necessarily Porifera.) As we noted in Volume One, sponges have
no nerve cells. But research has revealed that they possess the protein
structures from which synapses are constructed. Further, these proteins display
chemical bonding abilities strikingly similar to those proteins found in more
“advanced” animals. As the authors of one study state, “A relatively small
number of crucial innovations to this pre-existing structure may represent the
founding changes that led to a post-synaptic element.” More specifically, this
study focuses on what are known as scaffold proteins. Scaffold proteins bind
and organize other proteins, and are crucially important in efficient cell
signaling. The researchers found, in their words,
The data presented here support the presence of a proto-post-synaptic
scaffold in the last common ancestor to all living animals. [The presence
of the necessary genes, mitochondrial RNA, and binding structures in common
between the sponge Amphimedon and animals with neurons] suggest the proto-post-synaptic scaffold existed as an assembled
functional structure very early in animal evolution.27
Other researchers working with
the sponge Amphimedon have reached a similar conclusion. They note with
interest that this animal has virtually all of the genes necessary to build
synapses of the type found in mammals. The evidence these researchers gathered
led them to conclude that it was a "reorganization of gene expression,
most likely through the modification of transcriptional regulation" that
allowed for the evolution of true synapses in the early history of the animal
kingdom.28
Two British researchers have also
done important work in this area, focusing on the development of the complex,
deeply interrelated and interacting sets of proteins that enabled the rise of
synapses. Their research centers on analyzing synapse proteomes. (As you may recall, a
proteome is the complete set of proteins in a living entity.) And these
researchers emphasize an important point: In a very real sense, the evolution
of neural nets/nervous systems represents the shift from direct to mediated
sensing of the exterior environment.
In the case of the unicellular
prokaryote, the sensing is initiated at the cell's surface, where it is in
direct contact with the environment. In the case of the brain, the environment
of the outside world is detected by sensory organs (e.g., eyes, ears) which
convert information into patterns of action potentials that are transmitted by
nerve conduction to the synapses in the brain. These action potentials
stimulate releases of pulses of neurotransmitters into the local extracellular
environment where the receptors and signaling systems in the PSP [post-synaptic
proteome] are activated. The sets of synapse proteins comprising receptors and
their signaling and biosynthetic pathways arose in prokaryotes, and their role
in enabling the prokaryotic organisms to respond and adapt to changing
environments appears to be broadly the same role they perform in the brain.
The proteomes of pre- and
post-synaptic structures originated from the single-celled life forms in
different ways. Pre-synaptic release is governed by the same kind of mechanisms
used by single-celled organisms to release chemicals or send
"messages". Postsynaptic mechanisms involve a dense structure of
receptors on cell surfaces themselves. Almost 30% of the genes that encode
post-synaptic proteins in humans are found in all three of the superkingdoms
(eukaryota, archaea, and bacteria). The basic structures necessary for the
evolution of synapses existed in prokaryotes. It was the evolution of
eukaryotes that carried these structures to a new level. It was the evolution
of the protosynapse, which in all likelihood predated the emergence of axons
and dendrites in neurons, that laid the foundation for the evolution of
higher-level nervous systems. The ion channels possessed by the early metazoans
interacted with proteins that already existed, and as the number of receptors
on cell membranes grew, so did the rapidity and complexity of the signals mediated
by these early synapses.29
Many researchers are now gravitating to the hypothesis that neurons arose out of the epithelium (in this instance the external covering) of members of the phylum Cnidaria (the jellyfish and related animals). One team of researchers has found that members of Cnidaria possess genes crucial for the development of nervous systems in bilaterians, indicating that these genes are very ancient in origin.30
Another group of researchers
hypothesizes that the evolutionary sequence that led to the emergence of nerve
cells began with the split between the choanoflagellates and the evolution of
the poriferans and placozoans, each thought to contain cells that had
sensory-like abilities. Then the first eumetazoans, represented by the
ctenophores (comb jellies, marine animals that have some resemblances to
Cnidaria but use a different method of locomotion) and cnidarians, evolved. It
was these phyla, the researchers believe, that first exhibited true nerve
cells, synapses, and neuromuscular transmission. Then, in this scenario, came
the split between the cnidarians and the bilaterians. It was the bilaterians
that evolved true central nervous systems. This research team also points out
that many of the regulatory genes that govern such processes as neurogenesis
(the formation of neurons) have been conserved across not only the bilaterians
in general, but the cnidarians as well (although the cnidarians lack some key
genes). Some regulatory genes of the same type have even been identified in the
choanoflagellates. The researchers point out, however, that the processes that
drove nerve cell evolution in the cnidarians, and why there are differences
between their nervous systems and those of the basic bilaterians, have not been
fully elucidated. They explain that understanding the patterns of gene
expression in the two subkingdoms of animal life is crucial in the matter of
neurogenesis.31
Other researchers are delving
into the genomes of ctenophores. These researchers consider the members of phylum
Ctenophora to be the possible basal animals of the animal kingdom rather than
the placozoans or sponges, although they caution that the evidence is not
conclusive. They note that ctenophores also have a set of genes consistent with
postsynaptic function. Intriguingly, certain ctenophores have been found to
contain GABA, acetylcholine, and glutamate. Whether ctenophores have
presynaptic proteins comparable to animals with advanced nervous systems is an
open question, but if they possess them (as sponges do not) it would strongly
suggest that ctenophores were the link between the insensate and the sensate
worlds.32
One team of researchers has hypothesized
that the growth of nervous system sophistication was not driven simply by an
increase in the number of synapses in animal brains. It was also driven by the
proliferation of many different synaptic proteins (at least 600 varieties in
mammals) which allowed for the more efficient processing of nerve signals, and
with that, the development of more complex behaviors. According to these
researchers' findings, the evolution of the synapse seems to have been driven
by two distinct periods of acceleration. The first was an "explosion"
of proteins about one billion years ago, when the first multicellular animals
may have evolved. The second period of acceleration seems to have occurred
about 500 million ybp, as the vertebrates began to emerge. The key finding:
Most important for understanding of human thought, they found the
expansion in proteins that occurred in vertebrates provided a pool of proteins
that were used for making different parts of the brain into the specialised
regions such as cortex, cerebellum and spinal cord.
More numerous and diverse
proteins, therefore, may have made more complex brains possible.33
As synapses evolved, more
complex and communicative neurons evolved along with them. But the original
neurons probably lacked the complexity of later versions. As neurologist R.
Joseph has put it:
The first neurons were not well developed. Indeed, it is likely that
these first neural cells were without axons,[long, thread-like structures that
transmit signals] and were probably without dendrites [tree branch-like structures
that receive signals]. Instead, these first primitive neurons simply secreted
electrical and chemical substances which acted on other cells in a generalized
manner. Later, neurons developed the ability to grow a single, long, thin
axonal transmission fiber through which these same electrochemicals could be
selectively secreted to a second neuron. The dendrite of this second neuron in
turn would absorb these chemicals molecule by molecule via a selective receptor
surface located along its terminal junctions.34
There is the possibility that
the neuron evolved more than once. Some recent research at this writing claims
that, based on genomic studies, the comb jellies indeed lie at the base of the
animal kingdom [as some other scientists contend] and that their neurons have
evolved in a distinctive way, indicating that the neurons that led to the
nervous systems of the cnidarians and bilaterians evolved separately. But other
scientists contend that the studies that place Ctenophora in the basal position
are flawed and the much more "primitive" sponges are the first true
animals. Another researcher points out that ctenophores and bilaterians could
have had common neuronal ancestry but then evolved along separate, accelerated
lines.35, 36
Animals can move in one of two
ways: through muscular action or movement by means of cilia. One researcher has
hypothesized that neurons arose to coordinate the action of cilia. This
scientist has focused on a large animal group known as the spiralians, which
contains various worms and mollusks, noting the concentration of their sensory-motor
neurons. He hypothesizes that although improved
circuitry may have made the swimming of ciliated animals more efficient, the
major reason that the motors controlling cilia became more concentrated is that
this concentration condensed the length of the circuitry, and reduced the
number of cells and synapses involved in facilitating movement.37
In sum, the early forms of
animal life, even though lacking true nervous systems, nonetheless possessed
sensory cells. These cells possessed the ability to respond to chemicals,
light, and/or gravity. Certain
arrangements of proteins and simple elements in the external environment of
these animals, coupled with genetic regulatory changes within them, led to the
early evolution of synapses by means of exaptation. It was these synapses that
allowed certain cells to electrochemically "communicate" with others.
It was the evolution of increasingly sophisticated synaptic structures that
allowed these sensory cell types to evolve into genuine neurons. We are not
certain in which phylum this momentous event occurred.
It bears repeating that it is
not just the set of genes that matters in looking for the evolution of the
synapse and the neuron. It is the pattern of gene expression that is of
paramount importance. This expression was controlled by complexes of regulatory
genes that used existing structures in new ways. In fact, regulatory sequences
that change in their function may lie at the root of many evolutionary changes.
The outcome of these genetic changes, as we will see in greater detail below,
was sensory transduction, the conversion of sensory information into an
electrochemical signal.
It is my supposition that
neurons and synapses developed in a synergistic fashion, facilitated by
increasingly complex arrangements of proteins that in turn allowed for more
rapid and advanced forms of electrochemical signaling, which allowed for more
complex proteomes to evolve. The evolution of the synapse, in one respect, is
an example of natural selection being "opportunistic", unconsciously
using whatever means and materials were at hand to "encourage"
reproductive success.
From Neurons to the Simplest Brains
At what point does a brain
emerge from a mass of nerve cells connected by synapses? It is likely that
neurons scattered across the surface of ancient, jelly-like animals were
connected to each other in a nerve net. But this may not have been the true
precursor to a brain. So we must look to the origin of the bilaterians.
All bilaterally symmetrical
animals are descended, most scientists now believe, from a single bilaterian,
an animal called simply Urbilateria. It is now thought that this animal evolved
approximately 600 million ybp. The physical traits of the first true bilaterian
are not definitely known yet. However, two researchers who have carefully
analyzed both the morphological and genetic evidence have come to the
conclusion that Urbilateria was a segmented, worm-like animal with very basic eyes,
basic appendages, and most significantly, in their words, "a centralized
nervous system with a regionalized brain and ventral nerve cord"38.
In the view of many
researchers, there seem to be sufficient conserved features in all the nervous
systems of the members of Subkingdom Bilateria to warrant the view that there
is a single, original type of nervous system in the subkingdom from which all
others are derived. (Others believe vertebrates and invertebrates trace the
evolution of their central nervous systems to separate lineages.) There is
evidence that the molecular mechanisms that control the development of nervous
systems in beings as widely separated as worms and chordates are very similar.39
One particular researcher points out that the genetic array that produces a
dorsal-ventral (back to front) orientation of the nervous system is conserved
in both superphylum Protostomia [the arthropods, segmented worms, mollusks,
etc.] and superphylum Deuterostomia [the other animals that possess a coelom]. It
is his overall view that all the basic circuitry was in place in Urbilateria,
circuitry that would be prove to be useful in a variety of nervous system
functions.40
Further support for the view
that Urbilateria bequeathed all bilaterians with their basic nervous system
structure comes from research on control genes in invertebrates and
vertebrates. One researcher, focusing on genes that regulate neural stem cells
and embryonic development, has concluded:
Comparative studies of different aspects of brain development in
vertebrates and invertebrates reveal remarkable similarities in expression and
function of key developmental control genes. Indeed, vertebrates and
invertebrates share a complex set of control genes and molecular genetic
interactions that are responsible for neural induction, regionalized
patterning, progenitor proliferation and circuit formation in the developing
brain. This suggests that many of the molecular mechanisms involved in building
the brains of extant bilaterians may already have been present in their common
urbilaterian ancestor.41
In general, genes are
expressed or not expressed in the developing neural tube in ways that are
similar across the bilaterian subkingdom.
The first true brains seem to
have evolved out of bundles of nerves known as ganglia. Specifically, the first
brains may have been examples of cerebral ganglia, a phenomenon associated with
cephalization, the acquisition by a line of organisms of a distinct head. But
how to define the term "brain"? Two researchers introduce their study
on the subject with a very convincing definition: a brain governs the whole of
the animal, not just a part of it, it has distinct sections that carry out
specialized tasks, it has two lobes, its surface is comprised of connected bundles
of nerve tissue and nerve cells and its core by axons, neurons that communicate
directly within distinct areas of the brain are more numerous than neurons
involved in motor or sensory tasks, and the circuitry within a brain tends to
have multiple synapses rather than single ones.42
Brains are biologically
"expensive", which is to say they take a lot of finite physical
resources to build and maintain. Brains may have appeared and disappeared several
times in the early course of central nervous system evolution. Some researchers,
examining the evidence of the Ediacaran fauna, believe this may have happened
as many as four times, while other specialists, analyzing genetic data, are
convinced Urbilateria's brain became the template for all others.43
The utility of possessing a
brain of some sort—a place where electrochemical sensory signals can be
received, coordinated, transduced, and acted upon—is so great that the
possession of a brain has come to be a major feature of the vast majority of
bilaterians. Research in the early years of the 21st century has revealed that
about 90% of all known animal species possess a brain. As one of the major
researchers in the field of brain evolution has put it, "Clearly, the
evolution of a brain as part of an adaptive suite has been under heavy
selective pressure."44 Put another way, we can say this: Brains
facilitate survival. They confer reproductive advantage. They have been doing
so for about six million centuries. The more sophisticated and capable the
brain, the greater the advantage to that brain's possessor.
Vertebrates have more
sophisticated brains than invertebrates, and thus greater advantages. In the
individual development of invertebrates such as worms, arthropods, and certain
mollusks, the brain develops out of a cerebral ganglion. In modern vertebrates
brains form from the embryo's neural tube rather than from cerebral ganglia. How
did the chordates and the vertebrates come to have more advanced brain
structures, and a deeper perception of the exterior world?
The Evolution of the Chordate and Vertebrate Nervous Systems
As we saw in Volume One, the
earliest chordates yet described have been discovered in the Kunming region of
southern China, dating from about 515 million to perhaps as early as 530 million
ybp. As we also saw, two of the chordates discovered there appear to be
primitive vertebrates. What evidence do we have about the brains of the
earliest chordates? Many researchers have focused on the amphioxus, commonly
known as the lancelet, a marine invertebrate. (See the discussion in Volume
One, pp. 253-254.) A researcher looking for clues in amphioxus has concluded
that major elements of what he calls the ancestral brain of the chordate were
located near the mouth, and assisted in the acquisition of food.45 Other
researchers examining amphioxus, the closest invertebrate relative to the
vertebrates, have concluded that its original version was the last common
ancestor of both vertebrates and invertebrates. Their research also confirms
that there were two whole genome duplications that brought about the rise of
the vertebrates.46 (As you may recall, whole genome duplications are
when multiple copies of parental genes are inherited in reproduction.) Such
duplications are often harmful, but on occasion their outcomes are advantageous
enough to be "chosen" by natural selection. These duplications
provided large numbers of genes that could be blindly repurposed for other
uses. For example, as we saw in the previous volume, the four clusters of Hox
genes possessed by vertebrates (as opposed to the single cluster in amphioxus)
are the basis of the backbones that define a vertebrate.
Along with the rise of
vertebrates came a more elaborate brain, a brain which had roots going back to
Urbilateria but which showed a new level of organizational sophistication. Vertebrates
possess a tripartite brain. This means that vertebrate brains all possess a
forebrain (which develops from the embryonic prosencephalon), the midbrain (which
develops from the embryonic mesencephalon) and the hindbrain (which develops
from the rhombencephalon, and is divided into the metencephalon and
myelencephalon).
Interestingly, all
vertebrates, with one minor exception (the agnathans), possess the same number
of brain divisions within this tripartite scheme. Each of these vertebrate
brains possesses an olfactory bulb, an accessory olfactory bulb, a cerebellum,
cerebral hemispheres, a medulla oblongata, an optic tectum, and a pituitary
gland. These structures vary greatly in size and complexity across species, but
the fact that similar structures exist in (virtually all) fish, reptiles,
amphibians, birds, and mammals gives us strong evidence of the evolutionary
ties between the vertebrate classes of the animal kingdom. It also demonstrates
how powerful a principle the conservation
of brain structures actually is.47 (We will touch on the
functions of these divisions in the next chapter.)
A pair of European scientists
has studied gene expression in the zebrafish to gain insights 2about vertebrate
tripartite brain evolution. Their research indicates that the tripartite
zebrafish brain reflects different periods of evolutionary history. One part of
its brain reflects the earliest form of nervous system. Another major region
reflects the emergence of chordates, and the third major region reflects what
they call "a genuine vertebrate innovation", an advanced region of
the cerebrum--the upper and largest
part of the brain of vertebrates--known as the pallium.48 The pallium is the outer layer of tissue of
the cerebrum. But other scientists place the deep origins of the pallium within
the invertebrate line. Researchers examining a type of marine worm have found
structures in the worms' brains similar to the vertebrate pallium. Since the
vertebrates and these earthworm-like creatures last shared an ancestor 600
million years ago, that pushes the pallium's origins far deeper into the past
than we had suspected.49 In vertebrates, the pallium became the
basis of what ultimately came to be known as the cerebral cortex (although the
terms pallium and cortex are not synonymous). The full evolution of the cortex
in our genus ultimately brought about the dominance of humans in the living
world.
The genes that govern neuronal
development and diversity are known as clustered
protocadherins. Only discovered in the late 1990s, these genes encode
protocadherin proteins. Recent research has found that these genes are
conserved throughout all vertebrates, and hence are very, very old.50
Other recent research has discovered protocadherins in cephalopods (such as the
octopus and the squid) as well, the first invertebrates in which they have been
discovered, which would indicate such gene clusters are even more ancient than
supposed.51
Some researchers looking into
the evolution of the vertebrate brain have concluded that certain clusters of
protocadherin genes evolved through gene conversion, which is when genetic
material is replaced by highly similar DNA from another section of it. These
researchers also found that gene duplication and other factors played a role as
well.52 Other researchers investigating the role of protocadherin
genes have found, in their words, "The majority of vertebrate
protocadherin (Pcdh) genes are clustered in a single genomic locus, and this
remarkable genomic organization is highly conserved from teleosts [ray-finned
fish] to humans." Protocadherin genes appear to play a role in many neural
processes.53
Not only do almost all
vertebrates have the same number of brain divisions, but vertebrate brain size
has grown, albeit at variable and independent rates within the major vertebrate
radiations. These increases in brain size have in turn often brought about
increases in the number and variety of neurons, and, in all likelihood, more
complex behaviors. Since basic vertebrate brain structures have been conserved
across the major vertebrate lines, it is probable that this arrangement arose
early in vertebrate history, but fossil support for this contention is limited.54
Vertebrate brain size is related
to general body size. As body size increases, so does brain size, but it does
so in an allometric way. [This is to say, generally, that brains do not grow
proportionally to bodies in vertebrates. They tend rather, to grow
disproportionally large.]
Different types of vertebrates
have seen different rates of brain expansion. As one of the foremost experts in
vertebrate brain evolution has put it,
Both birds and mammals have brains that are 6–10 times larger than the
brains of reptiles of the same body size. Among birds, the largest brains for
body size are seen in perching birds, woodpeckers, and parrots, while the
relatively smallest brains are found in pigeons and chicken-like birds.
Similarly, mammals have brain sizes that are 10 times larger than those in
reptiles of the same body size. Primates and cetaceans have the largest brains
for their body size, while non-placental mammals, marsupials, insectivores, and
rodents have the relatively smallest brains.55
The development of the brain
in vertebrates was facilitated (in part) by the neural crest, a feature of the
embryo we first encountered in Volume One (page 253) in connection with the vertebrate
skeleton and other structures. Two French scientists investigating the neural
crest's role point out that the NC "played a crucial role in the
protection of the developing brain by encasing it within the skull and
generating the face." The NC also plays a role in generating neurons,
especially in those areas of the brain that are most recent from an evolutionary
standpoint.56
Neurons in vertebrates are
characterized by (A) the body of the cell itself (the soma), (B) a long, thin signal-transmitting
thread known as an axon that ends in branch-like structures (C) other
branch-like structures known as dendrites that receive signals, and (D) various
substructures, such as dendritic spines, which we will examine in the next
chapter. A striking feature of vertebrate axons is that they are myelinated. The myelin sheath is a fatty membrane
surrounding the axon. In the central nervous system myelin sheaths are
generated by a particular variety of glial cell. (Glial cells may broadly be thought
of as structural support cells.) In the peripheral nervous system these
coverings are generated by Schwann cells. It is an oversimplification, but
myelin sheaths can be thought of as electrical insulation. They facilitate the
flow of energy through the axon. There are small gaps in the myelin sheath
known as nodes of Ranvier, where
sodium channels are found. These nodes are crucially important, as we will see
in more detail in the next chapter.57
Myelin sheaths are not
exclusive to vertebrates. Such sheaths are also found in worm-like animals and
arthropods, for example. Many scientists are now convinced that the myelin
found in chordates, annelids, and arthropods has separate and independent
evolutionary roots.58,59. But other research points to the fact the
myelin found in vertebrates is more efficient, more like a "true"
myelin sheath than the coverings found in invertebrates. Vertebrate myelin
allows for a much higher conduction speed of action potentials. It can be
argued that the widespread acquisition of these efficient myelin sheaths and
axons in vertebrates was a crucial advantage for the members of this subphylum,
allowing for the generally larger body sizes of vertebrates.60
So vertebrate brains represented
an evolutionary leap, so to speak. Their tripartite structure reflected the
various evolutionary stages that had brought them into being. These brains had largely
uniform divisions, a tendency toward large size in relation to the body, a distinctive
and ancient genetic basis, increased physical protection, and myelinated axons.
They set the stage, so to speak, for the even larger breakthroughs to come.
The Evolution of the Mammalian Brain
As you may recall, the
earliest true mammals, which emerged between 200 million and 225 million ybp,
were unimpressive animals. Their brains
were, at first, small, and in the first mammals the sense of smell was
probably the chief way by which they explored the world. How do we trace the
evolution of the mammalian brain from such humble beginnings? Phylogenetic
analysis has revealed to us the genetic relationships between mammalian clades,
and has, in conjunction with fossil analysis, given us crucial insight into
brain evolution in our class.
Among the most significant
features of the mammalian brain has been its expansion (as we will see below).
Intensive research has begun to reveal the genetic structure that facilitated
this expansion. One particular brain researcher has first explained that all cells
are involved in four crucial processes—division, differentiation, migration,
and planned cell death, [or apoptosis]. In the specific case of the brain: (A) Division
generates neural cells in the developing embryo. (B) Differentiation separates
these newly generated neural cells into specialized types. In the human brain
there may be more than 100,000 different neuronal specializations. (C) Migration
is the movement of neural cells from their point of generation to that part of
the developing brain where they will function. (We will examine migration more
closely below.) (D) Planned cell death, or apoptosis, [to which we referred in
Volume One] helps shape the developing brain. He then explains that gene
expression controls all of these processes.61 There are genes that
have been conserved since the time of the earliest vertebrates, and genes that
seem to be conserved more specifically across the various mammalian species, as
we will see below.
The proteins and genes that
control gene expression are being identified, as are genes and proteins from
the early vertebrate line that play a crucial role in mammals. For example, the
protein FGF8 in rodents controls a gene called Emx2. Emx2 controls the
balance in size between the hippocampus and the frontal cortex. [We will
examine these structures in more detail elsewhere.] More broadly, it appears
that many of the genes that are involved in embryonic brain development have
roles to play in other regions of the body. The Pax6 protein, which appears to
be very ancient, encoded by the Pax6
gene, plays a crucial role in the formation of the eye, as well as having other
functions. Otx2 governs the size
relationship of the midbrain and the hindbrain. There are, it seems, thousands
of genes implicated in the brain's development.62 (You may recall
that there are such things as control proteins which govern genes, and control
genes that encode specific proteins, all of which are implicated in gene expression.)
The key evolutionary
development in mammals was the emergence of the neocortex—the dominant part of
the brain in humans. The neocortex appears to be exclusively a mammalian trait.63
The neocortex in humans is the gray matter that covers the cerebral
hemispheres. The possession of a complex neocortex gives mammals a crucial
survival edge: the ability to adapt quickly to unexpected changes in the
environment around them. The mammal with the greatest ability to do this is Homo sapiens sapiens. It is in the neocortex that the higher
functions of human consciousness lie.
It is the possession of the most advanced neocortex in the animal
kingdom that has made humans the most powerful multicellular life form on the
planet.
The mammalian neocortex evolved
a six layer structure. [The layers are labeled I to VI, with I being the
outermost and VI the innermost.] Each layer has distinct functions. Sensory
information is communicated layer to layer, from one set of neurons to another.
As one of the foremost researchers in this area has put it, "This
innovation allows serial steps in cortical processing of sensory information,
so that very complex computations are possible." It is not yet clear how
this layer-like organization evolved, but the neocortex in general has given the
mammals a decisive advantage over the reptiles. 64
Different kinds of mammals
evolved neocortices of different complexity. Since (A) brain tissue is
metabolically very "expensive", (B) complex brains take time to
develop, and (C) the offspring of animals with complex brains require more time
to mature, the growth of the brain in general and the neocortex in particular
require a large "reward" in the form of survival benefits conferred. The
analysis of contemporary mammal species has been useful in elucidating how
these different types of neocortex emerged. In addition to a strong emphasis on
olfaction, the first mammals may have
possessed an acute sense of hearing, chiefly the capacity for hearing very high
frequency sound waves. The evidence also indicates that early mammals had
cortices divided into 15-20 sections, with each section having a distinctive
structure and function.65
In order to understand the
evolution and function of the neocortex, it is necessary to understand the role
of interneurons. Interneurons function
entirely within a particular region of the central nervous system, chiefly in
specific areas of the brain. They act as relay neurons, helping to establish
connections between sensory and motor neurons. In a developing embryo,
interneurons migrate from their point of origin to the region that will become
the neocortex. In the early evolutionary history of mammals, changes in the
migratory abilities of interneurons containing the inhibitory neurotransmitter
GABA may have helped bring about the evolution of the neocortex.66 In
other words, the distribution pattern of those neurons that help establish
neural circuitry may have changed in such a way as to become self-reinforcing.
The evolution of the neocortex
may also have been facilitated by variations in the number of neural progenitor
cells. Progenitor cells are a type of cell similar to stem cells but they
produce more limited and specific types of cells. Large populations of neural
progenitor cells in a region of the embryonic brain called the subventricular zone (SVZ) can contribute to neocortices of
large size and complexity. According to one team of researchers, the outer SVZ or OSVZ affects both the
number of neurons and the direction in which migrating neurons travel upon
being generated. (The SVZ in adults is one of the sites in the brain implicated
in neurogenesis.) In the evolutionary history of the mammals, but especially
the primates, the OSVZ was, quite possibly, of key significance in bringing
about the enlargement of the neocortex.67
The abilities of the neocortex
do not depend solely on the density and variety of neurons. They are also the
product of the folding that is characteristic of advanced mammalian brains. [This
folding gives advanced neocortices a wrinkled appearance. The grooves that
cause this wrinkled appearance are called sulci, singular sulcus. The ridges between
these grooves are called gyri,
singular gyrus.] An advanced neocortex is folded in on itself, creating
a substantially increased surface area. This increased surface area in turn creates
dense masses of interacting neurons, facilitating the advanced functions of the
neocortex. Research has revealed that
during mammalian evolution the neocortex has undergone numerous episodes of
expansion. The processes of neurogenesis may be implicated in these episodes,
as we have noted. It is important to bear in mind that this neocortical growth has
happened in the context of specific selection pressures that interact with
genetic predisposition. One team of researchers offers a hypothesis that
explains how different neocortical sizes among mammalian species arose:
Differential growth across the neocortex and between species, however,
may tell us how variation in neocortical size is achieved, even if it will not
necessarily inform us of the environmental selection pressures effecting that
variation. Here, we have taken a reductionist approach by claiming that a gross
neuroanatomical feature (neocortical folding) may signify differences in
neurogenic programming both within an individual and across species. We have
made this claim based on evidence that neocortical size is determined before
any neuronal connections are established and on the assumption that the
formation of neocortical gyri is the result of an interaction between selection
pressures in cognitive or sensory behavior and the cell-biological properties
of neural progenitors throughout neurogenesis.68
In short, certain types of
mammalian behaviors and sensory experiences were made possible by the
neocortical expansion that may have been brought about by changes in how
neurons are generated within the subventricular zone. Different environments
"rewarded" or "discouraged" different behaviors and sensory
capacities, accounting for variations in neocortical features across the
various orders and species within Class Mammalia. There is also evidence that
during mammalian evolution there were changes in patterns of gene expression in
the regions of the brain involved in neurogenesis, changes that contributed to
the folding of the neocortex.69 (This folding is a phenomenon known, by the way, as gyrencephaly.) More broadly, genes with a
variety of functions or which acted in similar ways in a variety of bodily
regions had a profound impact on brain evolution.
Within the neocortex itself
different tasks are carried out by different regions. The process by which
functions are subdivided is known as arealization.
Two French researchers investigating this phenomenon have also looked to those
regions of the embryonic brain involved in neurogenesis in order to understand
how arealization occurs. They emphasize that while the neocortical structure
shows a great deal of conservation across species, indicating strong genetic
similarities in what they call neocortical patterning, the plasticity of the
neocortex, its ability to rewire its structures and establish new connections
in the face of sensory impairments tells us that there may be other factors at
work. [Plasticity can also have broader definitions, as we will see below.] After
considering a number of the major hypotheses concerning the wiring, shaping,
and location of different neocortical areas, and noting the fact that there is
not always a direct correlation between the presence or absence of certain
genes and the presence or absence of certain sensory areas, the authors make
the following observation: "is it reasonable to consider cortical areas as
emergent properties of a complex system...? In this case different mechanisms
may concur, either independently or synergistically, in creating the specific
cytoarchitecture and connectivity of a given neocortical area." The
authors emphasize that this may account for the plasticity of the cerebral
cortex both in the embryonic and post-embryonic stages.70
So the emergence of the advanced
neocortex may have been brought about by a complex, synergistic interaction
between those regions of the developing brain that generate neurons, the
expression patterns of genes within the various mammalian species, and particular
selection pressures in the environments in which these mammals evolved. This
interaction "rewarded" neocortices that exhibited pronounced folding,
folding which facilitated the division of the neocortex into areas with
distinct functions. Perhaps these functions may have helped bring about the six
layered structure of the neocortex, which in turn would have been aided by this
structure.
The Evolution of the Primate Brain
As we saw, the first primates probably
emerged about 65 million ybp, although an earlier emergence, perhaps at 85-90
million ybp, is certainly a possibility. Primates are distinguished in part by
their well-developed brains. While the primates are certainly not alone in
Class Mammalia in the possession of advanced brains—the cetaceans are also
impressive in this respect—it is the combination of the prehensibility of
primate extremities, the acuteness of primate vision, and the physical agility
of primates in conjunction with their unusual mental abilities that has proven
so advantageous to the members of Order Primates. Those primates that developed
first, facultative bipedalism (the ability to use bipedalism for specific
tasks) and then, ultimately, obligate bipedalism (the habitual use of upright
postures and walking) were especially well-served by these advanced brains. How
did the primates acquire such brains?
One approach is to first note
the differences between the sensory apparatuses of primates and those of the
rest of the mammals, and the genetic factors that account for them, then to investigate
the broader genetic factors affecting primate brain evolution. Primates
generally have a poor sense of smell. Primates generally have excellent vision,
with the more "advanced" primates possessing vision that is both
stereoscopic (which means that images from both eyes are resolved into a single
image, which allows for superior depth perception) and trichromatic (which
simply means these primates perceive a wide range of colors). A researcher looking
into these phenomena first focuses on gene expression affecting primate olfaction:
Mammalian olfactory receptors, a gene superfamily consisting of more
than one thousand genes, form a significant portion of the mammalian genome.
This extensive diversity is likely the result of olfactory receptors specific
binding to odorant molecules. But this specificity that leads to such variety
overall also leads to significant losses when a given organism is not exposed
to the odorant. In rodents and dogs, only 20% of the olfactory receptor genes are
nonfunctional and yet in humans fully 60% of olfactory receptors have undergone
pseudogenization...[Pseudogenization means the gene has lost its ability to
code a protein.] While initially focused
on the human genome, this finding has also held up across other non-human
primate species, correlating well with the relative roles of visual and
olfactory perception.71
Pronounced differences between
primates and other mammals in genes affecting the sense of taste have also been
noted, and the genetic basis of trichromatic vision in the Old World monkeys,
apes, and humans has been determined as well.72 The researcher
examining these phenomena believes that the broader picture of brain evolution
is also amenable to the methods of genomics, but, so far, only to an extent.
Generally speaking, mutations
in DNA that don't alter the making of amino acids, and consequently the
encoding of proteins, are called synonymous
mutations. Mutations that alter amino acids, and typically change the
encoding of a protein, are called nonsynonymous
mutations. Algorithms have been developed that measure the rate of change
caused by non-neutral mutations. The rates of synonymous as opposed to
nonsynonymous mutation can be stated as a ratio (expressed as a decimal) which
tells us something about the selection pressures being exerted on a given
species. In the case of primates, this ratio seems to be low. However, although
this method of tracking changes in primate brains has its uses, it is limited
in certain respects. Selection pressures affecting the brain can be very
complex. Individual genes can even be under multiple selection pressures. And
there is a somewhat surprising result we have seen from genomic analysis: "...there
simply are not a tremendous number of species-unique genes. The gene complement
of each of the primate species is largely the same enough so the exceptions
warrant significant attention even in the absence of any functional
understanding."73
The most obvious feature of
primate brain evolution been the growth of the brain's size. Each branching of
primates has brought with it changes in encephalization (again, the ratio of
expected brain size to body size). But not only has there been an increase in
size, there has been an increase in complexity, an increase in neuronal interconnectivity
and interaction. Locating the specific genetic substrates of these changes has
been a challenge. What have we been able to ascertain?
First, it must be understood
that although many genes influencing the primate brain have been identified,
their specific functions are not always clear. But some progress has been made.
Genes connected with certain disorders such as microcephaly (which is
apparently linked to the genes ASPM and microcephalin) and speech disorders
(apparently linked to FOXP2) have
been identified. [ASPM may also have
a major role in the expansion of the cortex.] FOXP2, you may recall, was discussed in Volume One in relation to
the ability of humans to speak. FOXP2
is broadly conserved across mammals, (and some birds) but the version of it
inherited by humans differs from all others. Further, the whimsically named
sonic hedgehog (SHH) gene seems to
have been positively selected in the line that led to the evolution of the
apes. SHH is a regulatory gene that
is implicated in the development of a broad range of different tissues.74
Two scientists from Cambridge
have been analyzing the role of a gene named NIN. NIN appears to have
evolved during the period in which the anthropoids were evolving. (As you may
recall, the anthropoids, the so-called "man-like" primates, are the
members of suborder Haplorhini, a group which contains the vast majority of the
world's primates.) NIN is involved in
the functioning of what are known as radial
glial cells. RGCs are involved in neurogenesis in the developing central
nervous system. It appears according to this research that NIN may have made a significant contribution to anthropoid brain
size.75
However, as we noted above, it
is not simply the size of the primate brain that is significant in assessing
its evolution, but its complexity as well. The anthropoids exhibit brains more
sophisticated than any other land animal. According to recent research, in the
course of 40 million years of evolution among Haplorhini, the various species within
the suborder have demonstrated a significant range of neocortical development
in response to different environments. The organizational sophistication of
anthropoid brains seems to owe a great deal to the white matter (brain tissue below the surface of the cortex) of the
prefrontal cortex. [The significance of the prefrontal cortex was touched on
briefly in Volume One.] The prefrontal cortex is crucial to such functions as
social interaction, goal direction, and the general synthesis of information. It
is the prefrontal cortex that seems to be under particular selection pressure
in the anthropoids. In apes the white matter of the prefrontal cortex seems to
develop right along with increased brain sizes, and in humans the relationship
is especially pronounced. In the words of two researchers examining this
relationship, "enhanced connectivity in the prefrontal cortex accompanied
the evolution of the human brain". It is striking, by the way, that even
in primates where brain size seems to have diminished over time, the importance
of prefrontal white matter remains.76
Further, brain structures
associated with learning acquired by stimulus-response and habit-formation, and
structures associated with cognitive memory, appear to be emphasized in the
great apes. In smaller primates, brain structures associated with spatial
memory, necessary for movement in a variety of settings, may be under strong
selective pressure. The great apes and the monkeys also appear to have parted
ways in their different emphases on the
development of the cortex and the cerebellum. The apes have
"invested" their brain development in these areas, whereas the small
primates have developed a greater emphasis on parts of the brain involved in
physical agility. It now appears that it was the more advanced organization of
the higher primates' brains in conjunction with the growth of their brain sizes
that allowed the great apes and humans to stand out among the primates. Varied
selection pressures on different species of primates produced what the researchers
investigating primate brain evolution call a "mosaic", one in which
different brain structures grew and developed in a variety of ways. The development
of differences between the brains of apes and Old World monkeys may have begun
20 to 30 million years before the present.77
Additionally, an embryonic
structure known as the cortical subplate,
found beneath an embryo's developing neocortex, is also thought by some
researchers to have been a key element in the evolution of the primate brain.
Although it appears that the subplate has long existed in the history of animal
life, it is very pronounced in primates. The evidence shows that the subplate
is involved in the organization of axons and general neuronal
interconnectivity, linking with various other structures as it pushes its
connections outward, and adding a great many neurons in the developmental
process.78
So, primate sensory abilities
were shaped by the interaction of primate species with the various environments
in which they lived. Perhaps, as early primates ascended higher into the
forests of the world, they left the rich world of smells farther and farther
behind, leaving it to their ground-dwelling mammalian relatives such as the
carnivores to live in and adapt to this richness, while their own olfactory
powers atrophied. The perilous environment in which the primates lived rewarded
brains with a pronounced shift toward visual capacities. The genes influencing
the primate brain, building on the vertebrate tripartite structural inheritance
and the six-layered mammalian neocortex, began adapting different primate
species' brains to different conditions, "rewarding" the prefrontal
cortex, particularly in the larger anthropoids. Brain structures that permitted
intense neuronal interactions, and increasingly intricate linkages between
different areas of the brain, were selected more and more.
And as the primate brain
evolved, especially the brains found in the larger anthropoids, a strong feedback
loop between the exterior world of experience and the interior world of
cerebral anatomy and physiology was established. The complexity and size of the
primate brain appear to have been affected by what is called sociality, an increasingly dense web of
interactions among the members of a primate population group. This sociality
"rewarded" or "discouraged" different traits, in so doing
shaping reproductive success or failure within a given primate group. Behaviors
reflected genetic inheritances. Multiple genetic inheritances came together in complex
ways in some species, giving rise to behaviors more novel, varied, and
unpredictable than those which came before. Even more significantly, these
genetic inheritances allowed certain primates to learn more about the exterior
world than any animals prior to them ever had. Things learned that facilitated survival
led, increasingly, to the perpetuation of the combinations of genes that had
given rise to them. This ability to learn, and the mental agility it reflected,
also came in handy in matters of self-defense. Primates could not always defeat
adversaries by sheer physical strength (although many primates were and are
physically formidable). But now some of them were developing the ability to outwit those attacking them, especially by joining in mutual, cooperative
action to do so.
The social brain hypothesis, which postulates that the large brain
size of primates is, in major part, a result of the demands placed on them by
the complexity of primate social life, is now widely accepted. There are degrees
of sociality among certain other mammals, but such relationships are especially
intense among primates. The particular forms primate sociality takes have a
decisive impact on primate group size. Very intense interaction tends to
constrain the size of a primate group because of the cognitive demands such a
group places on the individual. The evidence shows that the larger anthropoids also
show a tendency toward pair bonding. These pair bonding tendencies appear to
affect not only the reproductive process but also other types of relationships,
creating alliances and loyalties between group members.79
The preponderance of evidence
now leans toward the view that resisting predation was the main issue facing early
primate groups, and hence the greatest stimulus toward primate brain evolution.
It also appears that neocortical growth, not simply the general growth of the
brain, is the major determinant of group size and interactional complexity
among primate groups. Intriguingly, neocortical growth may have made a major
impact both on primate mating patterns and the ability of primates to deceive
other animals, as one scientist notes:
... male mating strategies are a function
of relative neocortex size
In this case,
the correlation between
male dominance rank
and mating success was a negative function of neocortex ratio: In other
words, in larger brained species, low-ranking males are able to subvert
high-ranking males’ abilities to monopolize matings, but
in small-brained species
they are not (presumably
because they lack
the cognitive abilities to exploit loopholes such as alliances and
female choice).Similarly, [researchers have found] that grooming clique size (a proxy for alliances) correlated with relative
neocortex size [and it has been]reported
that rates of deception (standardized by number of studies on the species) also
correlated with neocortex size.80
Furthermore, primates engage in grooming
behaviors as a form of bonding, and cooperate in foraging. Neocortical
development seems to have a great impact on such behaviors, but the exact mechanisms
by which this occurs have yet to be elucidated.81 But what
is most significant is this: behaviors such as mutual defense, pair bonding,
deceiving external enemies, forming alliances, grooming, and group foraging
reinforced group cohesion and group survival. The factors that gave rise to
these behaviors were selected, and they became self-reinforcing. Later, tool
making would establish a similar pattern of self-reinforcing feedback.
Scientists looking at all
these processes have attempted to formulate some general principles that seem
to govern the evolutionary growth we have been examining. Comparative
neuroanatomist George Striedter has offered several of them. Striedter
emphasizes that these principles do not exist in isolation. Rather, as he puts
it, they "coexist and interact". He begins as follows:
The most important principle of brain evolution is that many aspects of
brain structure and function are conserved across species, with closely related
species tending to have brains that are more similar than those of distant
relatives. Generally speaking, the degree of conservation is highest at the
lowest levels of organization (genes and other molecules), and embryonic brains
tend to be far more similar than adult brains.82
Striedter then emphasizes that
"brains tend to change in internal organization as they vary in
size." He points out that the largest vertebrate brains are 100,000 times the size of the smallest
ones, and the increases in size are correlated with changes in structure,
numbers of neurons, neuronal density, neuronal interconnectivity, and the size
of various brain regions. These increases in size and complexity almost
certainly have an effect on animal behavior. Striedter also explains the
principle of "late equals large". Research has revealed that in brain
development, the longer it takes a particular region of the brain to fully mature, the larger it tends to be.83
A Dutch neuroscientist has pointed
out, as have others, that the most obvious development in primate brain
evolution has been the dramatic growth of the cerebral cortex, [of which the
neocortex is the greatest part in humans]. Such development is the best indicator
of general intelligence, such as the ability of a primate to predict the
behavior of other animals. Specifically, the dominance of gray matter in
advanced brains is striking. In humans, gray matter comprises 50% of the brain
as opposed to 25% of the brains of insectivores. The total area of the cerebral
cortex, white and gray matter together, is 80% of the brain in humans as
opposed to 40% in mice.84
But in regard to general brain
growth, the cerebellum appears to occupy the same percentage of the brain's
mass across many mammalian groups, including primates, approximately 10% to 15%.
It now appears that the cerebellum and the cerebral cortex grew (roughly) in
tandem during the evolutionary history of mammals. Many researchers now believe
the cerebellum plays a significant role in learning, and it appears to have
many connections to structures in the cerebral cortex implicated in cognitive
functions.85
Among the factors associated with cortical growth:
It is now well established
that the cerebral cortex forms as a smooth sheet populated by neurons that
proliferate at the ventricular surface and migrate outwards along radial glial
fibers...Differences in the duration of neurogenesis, which increases more
rapidly with brain size for the cerebral cortex than for subcortical
areas...lead to a systematic increase in the ratio of the cortical to
subcortical regions. Whereas in small brained species the cortical volume
expands by virtue of a combined increase in surface area and cortical
thickness, the increase of the cortical volume in species with a brain size of
more than 3–4 cm3 is
almost entirely due to a disproportionate expansion of the cortical surface
area ... It is the increase of the cortical surface area beyond that expected
for geometrically similar objects of different volumes which creates the need [for]
cortical folding.86
Further, and of crucial
significance, the evolution of the thalamus, a structure in the lower
center region of the brain involved in many of the brain's most critical
functions, is deeply interconnected with the evolution of the cerebral cortex.
The thalamus interacts closely with the cortex. A standard neuroanatomy work calls
it, "the gateway to the cerebral cortex. It is, indeed, the principal
terminus of the great sensory subsystems, a forebrain structure ideally suited
to serve as a central clearing house for all sensations."87 We
will look at this more closely in the next chapter, but suffice it to say all
sensory information (except for olfaction) passes through it, specifically
through the dorsal thalamus. And of course, the thalamus has a key role in
motor functions.
But scientists have now
discovered that the thalamus's role is not limited to simply transmitting
sensory and motor data. The thalamus actually regulates the information going to the cortex. Most significantly,
the thalamus regulates the flow of data through it by means of neural inhibition. We have already noted
that one of the major neurotransmitters, gamma amino butyric acid (GABA) acts
as an inhibitor. Now we should mention neural inhibition's importance. In the
brain there are special types of interneurons that act to check excitatory
impulses. Without these restraints, in a brain with only excitatory action, it
would be impossible to organize effective neuronal activity. Coordinated
patterns of excitation and inhibition, countless episodes of impulse generation
and impulse restraint, make it possible for clusters of neurons to act in
concert with each other.88 (We will examine this phenomenon more
closely in the next chapter.)
Research has found that GABA
is widespread in the animal kingdom, as we have seen. But inhibitory neurons,
ones sensitive to GABA, are found in higher and higher concentrations in the
thalami of the more "advanced" animals of Class Mammalia, and GABA
apparently plays a more active role in these animals. The dorsal thalamus of
primates appears to have the most significant number of inhibitory neurons. The
primate dorsal thalamus is, in effect, the most effective
"gatekeeper" and organizer of sensory-motor impulses in the animal kingdom.89
Other researchers have also
confirmed that there is a greater concentration of GABA-sensitive neurons in
primate thalami than those of other mammals. They stress that the cortex, dorsal
thalamus, and what is known as the thalamic
reticular nucleus (sometimes abbreviated as Rt or TRN) are deeply
interconnected and appear to have evolved in parallel to each other.90
The TRN is a membrane that covers much of the thalamus. Most of the major
axonal connections between the cortex and the thalamus pass through it, and the
TRN appears to regulate communications between the two structures.91
So the advanced primate brain
fell into patterns of signaling and signal inhibition, as cortex, cerebellum,
and thalamus (along with the brain's "lesser" structures) acted to
generate and regulate these complex, intricately interconnected and
interweaving signals, signals that helped establish the reciprocal relationship
between the brain's physiology and the outer world of social interaction. This
reciprocal relationship acted as a selection factor, the signals shaping
the interaction and the interaction in turn "rewarding" or
"discouraging" the action of the signals and the clusters of neurons
that generated or restrained them.
The Great Turning Point: The Human Brain Emerges
So now we stand at the juncture
where a brain directly ancestral to ours has begun to evolve. As with the
evolution of the genus Homo itself,
the line between the non-human and the human is not clearly defined. We should
perhaps begin by recapitulating some of the paleoanthropological evidence we
looked at in the first volume, and add to that some new data that may shine
more light on a brain that is unmistakably that of the genus Homo.
As we saw, the genus of
upright primates known as Australopithecus
is still the likeliest ancestor genus to the human race, although not all
researchers agree. And as we noted in Volume One, there are still many gaps in
the fossil record. But in 2015, two important finds, one in Ethiopia and the
other in South Africa, added significantly to our knowledge. The find in
Ethiopia, a mandible and some teeth, was in the Afar region, where so many
striking discoveries have been made. Designated (temporarily) as LD 350-1, the specimens appear to be a
mixture of australopithecine and Homo
characteristics. They may be as old as 2.75 to 2.8 million ybp. The specimens
are younger than the examples of Australopithecus
afarensis found in the Hadar region of Ethiopia, and older than the
examples of Australopithecus garhi. Since A.
garhi has been postulated as a possible human ancestor, its status in that
regard may have been put into doubt. 92 We have, as yet, no evidence
that bears on the cognitive abilities of the animal represented by the LD 350-1
find.
The finds in South Africa are
unusually abundant. They number some 1,400 bones and 140 teeth from at least 15
individuals. The type of animal to which they belong has been designated by its
discoverers as Homo naledi. This proposed species of human
appears to be a mosaic of features. In that respect it is similar to Australopithecus sediba, a specimen
which was discovered a short distance from these finds. [We discussed sediba's importance in Volume One.] At
this writing the age of the specimens has not been ascertained, but they almost
surely fall between 3 million and 2 million ybp. For our purposes here, we
should also note that the skulls of naledi
appear to indicate a brain size less than half that of ours. There are
scientists who disagree about giving these specimens the designation Homo, and some researchers point out
significant differences in the forehead slope of different pieces of recovered
skulls. Nonetheless, these fossils are an important addition to our knowledge.
The feet of these animals appear to be strikingly like our own; the braincases,
not so much. But there may be important clues to the cognitive functioning of
these possible early humans:
Dean Falk at Florida State University in Tallahassee is especially
excited by the fact that [Paleoanthropologist Lee]Berger’s team has produced a cast of Homo naledi‘s small brain. Images of it hint at
interesting features close to one brain region associated with speech in modern
humans, she says. Berger says it’s possible that for the first time, we have
found another creature not that closely related to us, yet with a cognitive
ability “different but essentially equal to ours”.93
The designation Homo habilis, which as we saw in Volume
One, is a matter of controversy, may be strengthened by the Ethiopian finds. In
any event, habilis's cognitive abilities still bear examination. A key
measure of cognitive ability is the production of tools. One researcher,
examining the evidence carefully, believes that the animal known as Paranthropus boisei, along with Homo habilis, created the Oldowan tool
making tradition. This researcher believes in general that australopithecine
cognitive abilities have been underestimated. He believes, based on an examination
of modern African primates, that Paranthropus
and habilis, both of them possible
off-shoots of australopithecines, possessed highly dexterous hands [and by
implication brains developed enough to control these capable hands]. He
maintains that the invention of stone tools, not bipedalism, was what he calls
"the great adaptive invention of the savannah".94 As we noted in Volume One, the cranial
capacity of habilis and that of the
species that may have lived at roughly the same time, Homo rudolfensis, ranged from about 500 to 775cc. Chronologically,
the earliest habilis fossils are
about 2.4 million years old. (The Ethiopian finds may yet prove to be habilis.) It bears repeating that the
cultural line between australopithecines and habilis/rudolfensis may
not have been very distinct.
In support of the idea that
non-human primates had considerable cognitive abilities, it is worth noting at
this juncture that some pre-human primates appear to have indeed been tool
users. Tools more than 3.3 million years in age have been discovered at a site
in West Turkana, Kenya. The site has been named Lomekwi 3, and the tools discovered there pre-date the oldest Oldowan
tools by about 700,000 years.95
In comparison to the pre-human primates and proposed human types such as habilis/rudolfensis, we know much
more about the cranial capacities and cultural abilities of Homo erectus. As we noted in Volume One,
the oldest example of "Upright Man" that we have may be a 1.9 million
year old specimen, although we are on firmer ground in asserting that the
examples we have from 1.8 million and 1.7 million ybp are indeed erectus. The cranial capacity of the
specimens we have found ranges from 600 to 900cc in the earliest examples to
900 to 1200cc in later finds. This means that the estimated brain size of late erectus overlapped with the lower ranges
of brain size found in modern humans. The cranial vault of erectus tended to be low compared to modern humans, and the typical
erectus skull was wider than it was
high, in contrast to humans like us. The shape of the braincase itself was
similar in certain respects to that of modern humans.
Since cultural achievements
are tied closely to cognitive abilities, we should note that erectus (and perhaps also the species
quite possibly related to it known as Homo
ergaster) had the ability to use fire. Erectus
had the ability to manufacture tools efficiently. More crucially, it had the
ability to conceptualize and plan tool manufacture. These abilities infer the
possession of such capacities and skills as communication, developed working
and long-term memories, spatial cognition, planning, cooperation, and effective
social interaction. And erectus/ergaster was able to make a living
across a huge stretch of the planet's surface, from eastern Africa through the
Levant, from northern China to present day Indonesia, and perhaps even parts of
Europe. There may have been erectus
types in China for more than a million years. [In Volume One I used the more
conservative estimate of 900,000 years.] So we are talking about a kind of
human with impressive mental skills.
It is obvious, therefore, that
between 3.5 million ybp and 2 million ybp there were major changes in the cognitive
abilities and motor skills of the primate order's most advanced members. At the
start of this period such animals as Australopithecus
afarensis and Kenyanthropus platyops
flourished. By 2 million ybp, recognizable (possible) humans such as habilis roamed the African landscape and
the definite humans known as erectus
may already have begun to emerge. What hypotheses have been put forward to
explain these monumental changes, and what evidence have researchers gathered?
We have discussed a few of the
genetic changes that appear to have been associated with the rise of the
primate brain in general. Now we will zero in on those changes which seem to
have facilitated the development of a distinctly human brain. We turn first to research that shows certain genes
that are crucial in regulating brain size during development, ASPM [which we noted above] and MCPH1, must have been particularly
important in the line leading to humans. FOXP2
[which we have noted for its role in the human ability to use spoken language],
and GLUD2 also appear to have had a
major impact on human brain evolution as well. All of these genes and the
proteins they encode underwent strongly positive selection.96
Other research has emphasized the role of such genes as ADCYAP1 (adenylate-cyclase-activating polypeptide
1). As the embryonic brain develops, neurons are first proliferated, the proliferative state of development. The
transition into the state where neurons are differentiated
(which is to say when they begin to take on the traits typical of neurons) is
in part regulated by ADCYAP1. From
the time the proto-hominid line and the chimpanzee line began to diverge from
each other, ADCYAP1 appears to have
been one of the most strongly selected genes in humans.97
Other genes that appear to have played an
important role in human brain development include: AHI1 (Abelson helper integration site 1), which is involved in
linking axons from the brain to the spinal cord and which has shown strong
divergence from the chimpanzee line; SHH
(Sonic hedgehog), already mentioned, which plays an important role in
signaling; MAOA (monoamine oxidase A),
which encodes an enzyme that chemically breaks down a variety of
neurotransmitters, and which also shows strong divergence from the chimpanzee
line; and a large number of others, the functions of which are not always clear
but which seem to be selected in humans. One study found no less than 214 genes
that appear to have had accelerated development in the line leading to humans.
Other research has revealed genes that have been lost and patterns of gene
expression which have changed.98
But the researchers involved
in this study make a particularly cogent point:
The view that the human brain is the result of a trend also affecting
other primates is consistent with many studies. Both large-scale surveys of
evolutionary changes in brain-related genes, in addition to studies of many
single genes such as ASPM, microcephalin, SHH and GLUD2, have shown that these
genes experienced adaptive evolution in various time periods along the lineage
leading to humans, often affecting humans and other related primates rather
than being specific to humans only. Thus, available data point away from the
anthropocentric notion of human brain evolution to a more nuanced view, which
sees the human brain as resulting from a trend of increasing size and
complexity that also affected other living primates, although the impact on
humans is undoubtedly most profound. More plainly stated, the salient features
of the human brain did not all come about in the terminal human branch after
divergence from chimpanzees. Rather, many changes have occurred in much earlier
stages of the human lineage. Given this new view, genetic studies of human
brain evolution should focus on comparisons across many primates and even
non-primate species instead of being limited to only comparing humans and
chimpanzees.99
But the most significant
genetic factor in the evolution of the human brain may be the role of a gene
known as SRGAP2. Research has proven
that SRGAP2 has had a definite role
in human brain development. It has been ascertained that the human genome has
three additional copies of this gene, located at various places on chromosome
1, the only primate genome that does. The four copies are not identical to each
other, and are designated SRGAP2 A
through D. By comparing the different copies of this gene with those possessed
by orangutans and chimpanzees, scientists have discovered that the original SRGAP2 gene duplication occurred in the
line of primates leading to humans about 3.4 million ybp, yielding the A and B
variants. The C variant seems to have appeared in the human lineage about 2.4
million ybp, and the D variant is about 1 million years old. Researchers have
zeroed in on the C variant, which may have played a major role in the emergence
of the genus Homo between 2 million
and 3 million ybp. Specifically, SRGAP2C
seems to facilitate the growth of what are known as dendritic spines. These very small structures jut out from the
dendrites of neurons. They are exceedingly important in nerve impulse
transmission. Humans have more dendritic spines, and greater concentrations of
them, than any other type of primate. This characteristic may have contributed
to the rapid growth of the cortex in the line leading to humans. This growth in
turn would have allowed our ancestors' brains to function at a higher level
than those of other primates. It would have increased the ability of their
brains to make new neuronal connections in response to novel experiences. In
short, it would have strengthened the nexus between the exterior world in which
an animal found itself and the interior world of the brain. But it may have had
another impact as well. Many researchers now think a larger and more complex
brain is inherently more vulnerable to neurological disorders.100 The very abilities that made us the most
powerful multicellular life form made possible the mental torments and problems
that plague us.
How might this crucial change
have occurred? Research on this question has revealed that the original gene
duplication approximately 3.4 million ybp may have been incomplete. This
incomplete duplication may have ultimately triggered the duplication that
resulted in the C variant at about 2.4 million ybp. The incomplete duplication
that produced the C variant may have contributed to its importance and its
functions. SRGAP2C appears to be
universal in the human race, and it has been detected in Neanderthal and
Denisovan DNA as well. (The B and D variants of the gene appear to have little
or no impact on the human phenotype.) The SRGAP2C
variant is the dominant one.101 Other research has confirmed SRGAP2C's significance. The authors of
this research emphasize that SRGAP2C
interferes with the action of the ancestral variant of the gene and in so doing
changes the physical structure of dendritic spines and their density. The study
also suggests that it was the incomplete duplication process itself that permitted the C variant to
have this effect.102
In conjunction with these
genetic data, it is intriguing to recall the possible role of sialic acid in
brain evolution. We touched on this in Volume One. To recapitulate what I said
there: In humans, sialic acid, specifically N-acetylneuraminic acid
(abbreviated as Neu5Ac), is found in the greatest concentrations in the brain,
where it plays a significant role in building synapses and facilitating
“signaling” between neurons. But humans are the only mammals unable to
synthesize a different kind of sialic acid known as N-glycolylneuraminic acid
(abbreviated as Neu5Gc). The gene responsible for Neu5Gc synthesis, the CMAH gene, became inactive in humans.
This pseudogenization occurred, according to various estimates, between 3
million and 2.7 million ybp. Studies of Neanderthal specimens have detected
Neu5Ac but not Neu5Gc. This means the mutation that blocks the synthesis of the
latter acid must have happened before the emergence of the common ancestor of
Neanderthals and us. In fact, this change occurred just before the great
increase in encephalization among certain hominins. A definite relationship has
not been established between the two
events, but it is suggestive to some researchers. (The absence of Neu5Gc in
humans appears, by the way, to have a significant effect on how humans react to
the presence of various pathogens.)103, 104, 105
Another factor associated with the development of a modern
human brain may have been a change in the diet of early humans. Human brains
have very high metabolic demands. For a human to survive, these demands must be
met by food with a high energy content. Protein derived from the flesh of other
animals is the most abundant source of this energy. There seems to have been a
great expansion in African savanna land between 2 million and 1.8 million ybp,
and a concomitant growth of grazing animal populations. This larger number of
herbivores may have afforded erectus
an opportunity to engage in basic hunting activities. The making of hunting
weapons would have arisen, as well as manifestations of sociality such as
cooperative effort, food sharing, and increased interpersonal communication.
The musculature of the human would have become slimmer, while the fat storage capacity
grew. Many researchers are convinced that the consumption of high quality
animal protein by early humans was crucial in maintaining their expanding
brains.106 There would have been a feedback loop established between
the activities involved in procuring meat and brain development. These
activities facilitated the survival of the brains that conceived of them, thus
making it likely that such brainpower would be reproduced.
So between around 3.5 million
and 2 million ybp a confluence of events created a self-reinforcing synergy. A
series of fortuitous genetic changes made early humans more capable of social
interaction and cooperation, and these capacities proved reproductively useful.
The making of tools, already underway in pre-human primates, was encouraged by
the growth of these capacities, and tool-making became a factor in human
survival strategies. The increased capacity for socialization and communication
strengthened the unseen mental bonds that kept early human tribes together,
reinforcing the tendencies that had encouraged these behaviors. General
intelligence, the ability to learn new information, and, crucially, the ability
to apply this information in novel
situations, grew significantly. And the natural environment in eastern and
southern Africa provided opportunities for the acquisition of high-quality
protein, which in turn both facilitated the development of large brains and the
cooperation necessary for the hunting of large animals. All of these
developments made it possible for knowledge to be shared and communicated
across boundaries of both space and time. Several primates possess the capacity
to teach simple things to their offspring. But now the human primates could
teach increasingly complex and subtle lessons, and interact in ways which had
hitherto been impossible. The genetic, social, and environmental factors that
facilitated the growth of the human brain and contributed to the complexity of
its wiring made possible the basis of all complex human social life—advanced
culture.
The Emergence of the Modern Human Brain
When we speak of
encephalization, we are analyzing the size of the brain relative to the rest of
the body based on the expected ratio
for an animal of a particular size. An encephalization quotient of 1 would indicate
the brain was of the exact size expected for the particular type of animal. At
an encephalization quotient of 6 (and other sources say as high as 7.8)107,
modern humans have the highest EQ of any primate, or any large mammal of any
kind, for that matter. We have noted the brain size of Homo habilis and Homo erectus
above. Starting from around 500cc (a figure thought by some to be too low to
define a genuine human brain) to around 1200cc in the latter erectus types and in Homo heidelbergensis, there was a
dramatic expansion of size. The brains of anatomically modern humans (AMH) now
average around 1350cc. Neanderthal brain size even reached 1750cc in one
example. So the growth in size of the brain is obvious.
But as we have noted, size is
not the only significant factor. Intelligence and true consciousness seem to
arise out of a combination of absolute brain size, brain size relative to body
size, encephalization, and most significantly, density and complexity of neuronal
organization, particularly in the cortex. Broadly speaking, the structural
traits of a cortical region are affected by the number of neurons in that
region, neuronal size, and how those neurons are distributed in the region. In
the neocortex, pyramidal neurons, which are excitatory, comprise 70% to 85% of
all cortical neurons. As the authors of one general survey put it,
In all primates examined to date, pyramidal neurons are characterized
by extensive morphological changes during post-natal maturation and remodeling
throughout life, potentially underlying flexible behavioral responses typical
of all primates. Pyramidal neurons in the human neocortex display a prolonged
period of development compared to other primates...especially in the cortical
areas characterized by expansion during human evolution, including selected
areas in the prefrontal cortex (PFC).108
It was the evolution of an
advanced prefrontal cortex that chiefly distinguished Homo sapiens from its ancestors. A recent study confirms there is a
heavier-than-expected concentration of glial cells in the human prefrontal
cortex compared to other anthropoids. [Glial cells may broadly be thought of as
structural support cells, and there are several major varieties of them.] A
high ratio of glial cells to neurons seems to be necessary for the human
brain's metabolic support.109 Other research indicates that the
prefrontal cortex is more likely to exhibit folds (gyrification) than the prefrontal
cortices of non-human primates, and this appears to be a crucial factor in the
advanced behavioral abilities of humans. Further, the growth of white matter in
the frontal lobes (noted in a different context, above) appears to be
especially significant in humans, outpacing the white matter found in the
frontal lobes of all other primate species. This may help account for the
advanced cognitive functions found in the prefrontal cortex, such as an
understanding of cause and effect, language, time perception and time-related
information, and the control of other conscious functions, or the "executive
function".110 The executive function allows humans to plan,
organize, and do other tasks connected with the accomplishment of specific
goals.
The human prefrontal cortex is
three times larger in absolute size than that of any of the great apes, but the
importance of this fact is still debated by some researchers. The key areas of the prefrontal cortex do not
appear to be disproportionate in size relative to those of other advanced
primates. The crucial differences appear to be in organization and what is
called microstructure. In this case
microstructure refers to what the authors of one study refer to as
"complex dendritic arborizations" in some of the PFC's substructures.
The PFC is one of the last parts of the brain to mature, and the reorganization
of its neuronal network may have been comparatively recent in human evolution.
Additionally, it appears that certain disorders within the PFC's circuitry give
rise to neurological conditions such as autism.111
In addition to the prefrontal
cortex, the evolution of the human cerebellum has been of great significance. We
have examined briefly the importance of the cerebellum in the ability of
primates to learn and utilize information. Some researchers believe the
cerebellum's role in human brain evolution has been more significant than
generally believed, pointing out that the human cerebellum has four times as
many neurons as the neocortex. These researchers note that the cerebellum is of
indispensable importance in the human capacity for developing tools, inasmuch
as it is involved in sensory-motor functions and the learning of step-by-step
procedures. Research has shown that in the evolutionary history of the
cerebellum, its expansion relative to neocortical growth was as much as six
times faster among the great apes than in non-ape-like primates. (Some
researchers hypothesize that this difference was the result of the challenges
large primates had to meet in moving their bodies through an arboreal
environment.) The cerebellum's rapid
development may also have helped facilitate the human acquisition of language.112
As we have noted already in a
different context, the human brain's development was also intimately tied to
feedback loops and synergies associated with complete obligate bipedalism and
the use of the hands to allow for fine (in the sense of small) motor skills. Upright
posture freed the hands for the task of manipulating objects. There is evidence
that truly agile hands preceded obligate bipedalism,113 but once
these features began to act in combination, they created a synergy that reinforced
human technological efforts by rewarding the brains that conceived of better,
more effective tools. The brain's development may also have been profoundly
affected by climatic conditions, competition between and among early humans,
and general ecological factors (such as the presence of parasites in a given
area). Two researchers have found that while there were multiple factors that
influenced the growth of brain size, "the core selective force was social competition".
Those humans that were most effective at finding or constructing shelter,
devising weapons, hunting, and using other critical survival strategies were
the ones that natural selection tended to favor.114
Vertebrate brains conserve a
great many distinct structures across many species. The human variation of the
vertebrate brain in turn became an arena of increasing specialization. But why
has this specialization come about? One researcher has made this argument:
If adaptations in the brain resemble other organismal adaptations—e.g., tissue types, limbs, organs, and the molecular machinery of cells—they are likely to be both heterogeneous and hierarchical. Heterogeneity arises from the fact of form-function fit: adaptations have different histories and have evolved to do different things, so they are likely to have diverse properties rather than coming in just two kinds. Hierarchical organization, in turn, is characteristic of systems that evolve via descent with modification. Because new structures evolve from older structures, adaptations frequently share a mix of ancestral and derived features, with relatively ancient features (e.g., properties of neurons in general) shared more widely across organismal structures, and relatively recent ones (e.g., properties of specialized brain regions) more narrowly distributed, in a hierarchically organized fashion.115
If adaptations in the brain resemble other organismal adaptations—e.g., tissue types, limbs, organs, and the molecular machinery of cells—they are likely to be both heterogeneous and hierarchical. Heterogeneity arises from the fact of form-function fit: adaptations have different histories and have evolved to do different things, so they are likely to have diverse properties rather than coming in just two kinds. Hierarchical organization, in turn, is characteristic of systems that evolve via descent with modification. Because new structures evolve from older structures, adaptations frequently share a mix of ancestral and derived features, with relatively ancient features (e.g., properties of neurons in general) shared more widely across organismal structures, and relatively recent ones (e.g., properties of specialized brain regions) more narrowly distributed, in a hierarchically organized fashion.115
The human brain, in this view, is a mixture of structures inherited over
millions upon millions of years of development, with the more specialized
functions being most recent. The human brain, in short, often uses ancient
features in novel ways, and incorporates a startling range of adaptations into
its key functions. The way I think of it is this: the evolution of the
human brain was not a matter of constructing a brain “from the ground up”. It
was the modification of/and addition to existing structures, and with it a
concomitant elaboration of brain functions, that created its distinctive
features.
David Geary, one of the chief
figures in brain evolution research, maintains that the functions of what we
call mind are a mixture of genetic limitations acting in combination with
experiences, especially experience acquired early in life. The brain must
operate within the boundaries genes have set for it, boundaries which
facilitated reproductive success, but experience can modify the brain within
these boundaries, and give to it a considerable degree of plasticity.116 By plasticity in this context Geary means
"the ability to adapt brain and cognitive systems and processes to
socially and ecologically salient information." The debate among
neuroscientists and scientists studying cognition in general is the degree to
which these factors affect the composition of the mind, with some scientists
emphasizing genetic constraints while others give major weight to
culturally-determined experiences to which an individual is exposed.117
The human brain seems to have
reached the limit of its average size approximately 100,000 ybp. There are a
number of hypotheses that attempt to explain this. Striedter has pointed out
that the size of the birth canal in Homo
sapiens females appears to have reached its evolutionary limit. Indeed,
this limit may have been reached in the era of erectus. The brain size of sapiens
may have grown greater than that of erectus
because natural selection favored increased postnatal
brain growth.118
The end result of all these
processes has been a brain that is evolved, in Geary's view, to seek control
over the variables surrounding the individual. These variables can include
physical resources and social relationships. It appears to be a general
tendency among humans to arrange these variables to their own (perceived)
advantage as much as possible. Humans
tend to seek advantage. They are evolved to do so. [In my view, humans who
do not seek any advantage or control are highly anomalous.]119 In
the statement "humans tend to seek advantage" perhaps lies the source
of human ambition, the human desire to acquire survival skills, human attempts
to manipulate other humans, human competition, human striving for success in a
given social setting, and human ethical unscrupulousness (in some cases).
The end result of human brain
evolution has also been, in the view of neuroscientist Sebastian Seung, the
emergence of what he calls a connectome.
Seung defines a connectome as "the totality of connections between the
neurons in a nervous system...It is all
of them." He adds, "Minds differ because connectomes
differ." He sums up the definition
by saying, "You are the activity of
your neurons."120 Seung stresses the fact that a neuron's
function is mostly the result of its connections to a whole host of other
neurons, either directly or indirectly. These neurons form electrochemical
relationships with each other. As he explains,
If two neurons are repeatedly activated simultaneously, then the connections between them are
strengthened in both directions...If
two neurons are repeatedly activated sequentially, the connection from the first to the second is strengthened.121
In other words, every one of
the estimated 100,000,000,000 members of the genus Homo that has lived has been neurologically unique. Yet, these
humans have shared enough in common neurologically with those with whom they
lived that they were capable (in most cases) of establishing working
relationships and effecting some level of communication with them. These
relationships in turn altered their connectomes in ways that cannot be readily
comprehended, ways that could not have been predicted or explained. The
evolution of the brain produced such complexity, such a subtle and multivariate
interaction between genetic inheritance and culturally-experienced reality,
that humans were, in many ways, strangers to themselves—and to each other.
So let us now step back and
sum up the very brief and very inadequate examination I have made of this
momentous subject.
An Overview of Brain Evolution
One of the giants of the study
of human brain evolution is Ralph Holloway. Early in the 21st
century Holloway proposed the following overview of hominin brain evolution. In
the initial stage, 7-8 million ybp, in the period of the last common ancestor
of hominins and chimpanzees, the typical brain of an advanced primate was
ape-like in organization with an approximate
brain size of 350-450cc. In the australopithecine era, around 3.5
million ybp, brain reorganization was taking place perhaps before there were
any major increases in brain size. Careful examination of endocranial casts
reveals a reduction in the visual cortex, an increase in the posterior
association cortex, and the possibility of increased memory and foresight. By
the early Homo era, around 1.9
million ybp, an increase in brain size and encephalization was evident. The
region of the skull above Broca's area (which is associated with language) was
prominent. By inference, humans were now more adept at social interaction,
tool-making, and spoken communication. In the era of Homo heidelbergensis, Homo
neanderthalensis, and Homo sapiens,
the period 500,000 ybp to now, systems
of symbolic communication arose, the brain's hemispheres became asymmetric, the
feedback loop between tool making and brain development was well established, and
brain size and encephalization reached their current maximums.122
A Summary of the Evidence
We noted first that humans have
not yet, by any means, fully elucidated the evolution of the human brain. We
started the process of trying to trace the brain's origins with the existence
of sentience. Sentience, as we saw, is an inherently possible condition of
energy-matter, emerging from its processes, specifically those associated with
life. Sentience utilizes one of the four basic physical forces,
electromagnetism. The possession of sentience provided crucial advantages to
those beings possessing it, advantages that were reproduced in increasing extent
and diversity. The chemical precursors of neurotransmitters were found
throughout the world of living things. In the line of living things that were
heterotrophic and in which sexual reproduction was the rule, these precursors
were repurposed and utilized in ways that made electrical communication between
and within cells possible. Single-celled organisms evolved response mechanisms
to chemicals in their environments. Ion channels facilitated these responses.
Structures on certain cells allowed for the transmission of
"information" between certain kinds of other cells, and the synapse
began to evolve. With the rise of the synapse came the evolution of the neuron,
the basic unit of the nervous system. These neurons may have first manifested
themselves on the exteriors of simple invertebrates. They were extremely basic
versions of the modern neuron. Synaptic proteins proliferated, enhancing the
ability of cells to "communicate" with each other. The earliest
animals had the capability to evolve
nervous systems, but did not themselves possess them.
With the coming of the
bilaterians came the evolution, perhaps from ganglia, of the first genuine
brains. Complex sets of genes helped control this process, genes that were expressed
or not expressed in varying patterns. With the evolution of the vertebrates
came a more elaborate brain, one possessing a tripartite structure, and
possessing a set of substructures found throughout the vertebrate line. The cerebrum
and the pallium emerged. Clustered protocadherin genes governed neuronal
development in the vertebrates. Vertebrate brains expanded at greatly varying
rates. The neural crest began to provide protection for the expanded brains.
The vertebrate axon became myelinated, enhancing its function. With the mammals
came increasingly large brain sizes, expansion facilitated by genetic changes
in embryonic cell generation. From these processes evolved the six-layered
neocortex, the crucial turning point in brain evolution. Neocortical tissue
developed folds and ridges, allowing for a great expansion of its surface area.
Different areas of the neocortex began to handle specialized tasks. Selection
pressures grew sharper, driving the neocortex's evolution. A synergy between
the neocortex's structure and its increased reproductive usefulness was
established.
Tree-living mammals, the
primates, began to evolve throughout certain forest areas. Their brains
increasingly emphasized visual acuity and de-emphasized olfactory ability. A
complex set of selection pressures began shaping primate evolution. Within the
anthropoids, critically important genes enabled major increases in brain size. White
matter expanded in anthropoid brains. Brain structures associated with learning
and memory expanded. The cortical subplate, an embryonic structure, may have
been of critical importance in the evolution of a highly interconnected network
of neurons in the primate brain. Social interaction played an increasing part
in primate brain development. The primate thalamus emerged as the great
"gatekeeper" of neural signals, organizing effective neuronal
activity in coordinated patterns of excitation and inhibition.
In the great arc somewhere
between eastern and southern Africa, certain terrestrial primates, already in
possession of excellent hands, began to evolve fully upright posture and more
sophisticated brains. The first primitive tools were made, enhancing the
survival of the genes that had helped conceive them. A copying error in a
particular gene may have made a crucial difference in the evolution of increasingly
powerful brains. Handy Man and then Upright Man began to exhibit these more
capable brains, produce better tools, and develop more useful social
relationships. The prefrontal cortex and the highly neuron-dense cerebellum
began to emerge, enabling the upright animals with dexterous hands to gain
increasing control over their immediate surroundings. The upright animals were
now the most intelligent beings that had ever lived on the tiny planet, each
one possessing a unique set of neuronal connections, and almost all of them ceaselessly
seeking to control those features that they could in the world around them.
Their brains were adaptable, more capable of adjusting to changing
circumstances than those of any other animal.
In sum, the human brain is the
product of hundreds of millions of years of evolutionary development. Its
principal task remains what the brain's task has always been in whatever animal
possessed one: keep the organism alive long enough to pass its genes down. It
is in the attempt to fulfill that task that much of human life and the human
experience has been directed.
But the human brain became
much more than just a tool of reproduction. It was complex enough, its anatomy
and physiology sophisticated enough, to interact with and more accurately perceive the outer world than the brain
of any other animal. It was especially evolved
for interaction with those animals possessing similar brains. This interaction
and perception change the brain in a multitude of ways, and the brain in turn
changes the outer world in some respects, setting up a reciprocal process.
But there are limits to this perception, ones which
are not readily apparent. The sensory apparatus that serves the brain does not
permit it to perceive The Thing in Itself. The brain perceives a version of reality, one suited to its multitudinous
survival tasks. The human brain is extraordinary in its abilities, but is a
highly flawed and vulnerable instrument. It is, as I pointed out at the start
of this chapter, a physical object after all. The complex anatomy and
physiology of the human brain allowed for the development of a very high level
of consciousness. Consciousness, the awareness of one's awareness, a sense of
being a self, a sense of being present
in a given moment, the sum total of a brain's reactions to the sensory stimuli
to which it has been exposed, is so complex and varied that its possessors do
not fully grasp its nature and functions. The very thing that most defines a
human, and which gives a human such extraordinary power relative to other
animals, often acts as a barrier to that human, making existence itself
unpredictable, unexpectedly difficult, and even mysterious.
In short, evolutionary
processes produced a physical entity that was, in one perspective, an
exceedingly complex mass of electrochemical signals, signals that were
expressed or inhibited in a pattern that ultimately produced what for us was
the ultimate emergent phenomenon: our own minds.
So let us now examine the
physical object in which the mind resides.
NOTES:
1. Neuroscience, 2nd Edition http://www.ncbi.nlm.nih.gov/books/NBK10957/
2. Burkhardt P, Stegmann
CM, Cooper
B, Kloepper
TH, Imig
C, Varoqueaux
F, Wahl
MC, Fasshauer
D., "Primordial neurosecretory apparatus identified in the
choanoflagellate Monosiga brevicollis" in PNAS, 2011 Sep
13;108(37):15264-9. doi: 10.1073/pnas.1106189108. Epub 2011 Aug 29.
3. Pawel Burkhardt, Mads Grønborg,
Kent McDonald, Tara Sulur, Qi Wang and Nicole King. "Evolutionary Insights
into Premetazoan Functions of the Neuronal Protein Homer". Molecular Biology and Evolution Volume
31, Issue 9Pp. 2342-2355.
4. SNAREing the Basis of Multicellularity: Consequences
of Protein Family
Expansion during Evolution
Tobias H. Kloepper, C.
Nickias Kienle, and Dirk Fasshauer
*Research Group Structural
Biochemistry, Department of Neurobiology, Max-Planck-Institute for Biophysical
Chemistry, Go¨ttingen, Germany; and Center for Bioinformatics, University of
Tu¨bingen, Tu¨bingen, Germany
5. "Evolution
of neurotransmitter receptor systems". Venter JC1, di Porzio U, Robinson
DA, Shreeve SM, Lai J, Kerlavage AR, Fracek SP Jr, Lentes KU, Fraser CM.
6. Zhiheng
GOU,Xiao WANG,Wen WANG. Evolution of neurotransmitter gamma-aminobutyric acid,
glutamate and their receptors[J]. ZOOLOGICAL RESEARCH, 2012, 33(E5-6): 75-81.
7.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1690648/pdf/10885511.pdf
[Evolution of the serotonergic nervous system]
8. Victoria V. Roshchina, “Evolutionary
Considerations of Neurotransmitters in Microbial, Plant, and Animal Cells”, in
Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and
Health, Lyte, Mark, Freestone, Primrose P.E. (Eds.)
9. Susan J. Murch, “Neurotransmitters,
Neuroregulators and Neurotoxins in Plants”, pp. 137-140 in Communication in
Plants: Neuronal Aspects of Plant Life edited by Frantisek Baluska, Stefano
Mancuso, and Dieter Volkmann, pp. 137-140, and 143-144.
10. Jin Cao, Ian B. Cole, and Susan J. Murch,
“Neurotransmitters, neuroregulators and neurotoxins in the life of plants”,
2005 symposium sponsored by The Canadian
Society for Horticultural
Science.
11. Mariela Odjakova1 , Christina Hadjiivanova,
"Animal Neurotransmitter Substances in Plants", in Bulgarian Journal
of Plant Physiology, 1997, 23(1–2), 94–102
12. http://www.nature.com/scitable/topicpage/endosomes-in-plants-14404958
13. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2213573/
14. https://www.deepdyve.com/lp/elsevier/the-evolution-of-ach-and-gaba-as-neurotransmitters-a-hypothesis-xogW0D6ah0
15. "Two Pathways of Evolution of
Neurotransmitters-Modulators" by C. Ladd Prosser in Evolution of the First
Nervous Systems, edited by Peter A. V. Anderson ETC
16. "Neurotransmitters,
neuromodulators and neurohormones" Malcolm Burrows
DOI:10.1093/acprof:oso/9780198523444.003.0005]
17. Katz, Paul S, and Joshua L Lillvis.
"Reconciling the deep homology of neuromodulation with the evolution of
behavior." Current Opinion in Neurobiology 29 (2014): 39-47.
18.
http://www.nature.com/scitable/topicpage/gpcr-14047471
19. Rose, Steven, The Conscious Brain, pp. 140-141
20. Allman, John Morgan, Evolving Brains, pp. 3-5
21. Tindall, Marcus J., Eamonn A. Gaffney, Philip
K. Maini, and Judith P. Armitage. "Theoretical insights into bacterial
chemotaxis." Wiley Interdisciplinary Reviews: Systems Biology and Medicine
4.3 (2012): 247-259.
22. Ion Channels: Structure and Function,
http://www.whatislife.com/reader/channels/channels.html
23. Ofra Gohar, Ph.D, "Ion Channel
Modulation by G-Protein Coupled Receptors" in Modulator No.21 Fall 2006
www.alomone.com
24. Pohorille A, Schweighofer K, Wilson MA, “The
origin and early evolution of membrane channels” in Astrobiology 2005
Feb;5(1):1-17.
25. Adaptive evolution of voltage-gated sodium
channels: The first 800 million years. Harold H. Zakon,
Edited by John C. Avise, University of California, Irvine, CA, and approved May
1, 2012 (received for review February 22, 2012) PNAS, Volume 109, June 26, 2012
26. http://www.mba.ac.uk/fellows/pawel/wp-content/uploads/2015/02/Burkhardt-2015.pdf
27. "A Post-Synaptic Scaffold at the Origin
of the Animal Kingdom" in PLOS One
Onur Sakarya ,
Kathryn A. Armstrong , Maja Adamska, Marcin Adamski, I-Fan Wang, Bruce
Tidor, Bernard M. Degnan, Todd H. Oakley, Kenneth S. Kosik Published: June
6, 2007 DOI: 10.1371/journal.pone.0000506
28. Conaco C, Bassett DS, Zhou H, et al.
Functionalization of a protosynaptic gene expression network. Proceedings of the National Academy of
Sciences of the United States of America. 2012;109(Suppl 1):10612-10618.
doi:10.1073/pnas.1201890109.
29. Emes, Richard D., and Seth G.N. Grant.
"Evolution of Synapse Complexity and Diversity." Annual Review of
Neuroscience 35 (2012): 111-131.
30. Hiroshi
Watanabe, Toshitaka Fujisawa and Thomas W. Holstein, " Cnidarians and the
evolutionary origin of the nervous system" in Development, Growth, &
Differentiation (2009) 51, 167–183 doi: 10.1111/j.1440-169X.2009.01103.x
Blackwell Publishing Asia
31. Brigitte Galliot, Manon Quiquand, Luiza Ghila,
Renaud de Rosa1, Marijana
Miljkovic-Licina, Simona Chera, "Origins of neurogenesis, a cnidarian
view", in Developmental Biology, Volume 332, Issue 1, 1 August 2009, Pages
2–24
32. Marlow, H., & Arendt, D. (2014).
Evolution: Ctenophore Genomes and the Origin of Neurons. Current Biology,
24(16), R757-R761.
33. "Complex Synapses Drove Brain
Evolution" in ScienceDaily (June
9, 2008).
34. Joseph, R., The Naked Neuron, p. 16 [Finish
cite]
35. "Did neurons evolve more than once on
Earth?" New Scientist, 8 April 2015
36. Leonid L. Moroz, et al., "The
ctenophore genome and the evolutionary origins of neural systems", Nature
510, 109–114 (05 June 2014)
37. Gáspár Jékely, "Origin and early
evolution of neural circuits for the control of ciliary locomotion", Proc.
R. Soc. B 2011 278 914-922; DOI: 10.1098/rspb.2010.2027. Published 8 February
2011
38. Guillaume Balavoine and André Adoutte,
"The Segmented Urbilateria: A Testable Scenario" in Integrative and
Comparative Biology Volume 43, Issue 1, Pp. 137-147
39. Arendt, Detlev et al. “The Evolution of
Nervous System Centralization.” Philosophical Transactions of the Royal
Society B: Biological Sciences363.1496 (2008): 1523–1528. PMC. Web. 12 Oct. 2015.
40. Alain Ghysen, "The origin and evolution
of the nervous system" in Int. J.
Dev. Biol. 47: 555-562 (2003)
41. Reichert, Heinrich. “Evolutionary Conservation
of Mechanisms for Neural Regionalization, Proliferation and Interconnection in
Brain Development.”Biology Letters 5.1
(2009): 112–116. PMC. Web.
13 Oct. 2015.
42. Sarnat HB1, Netsky MG "When does a
ganglion become a brain? Evolutionary origin of the central nervous
system" in Seminars in Pediatric
Neurology 2002 Dec;9(4):240-53.
43. R. Glenn Northcutt, "Evolution of
Centralized Nervous Systems: Two Schools of Evolutionary Thought" in In the Light of Evolution: Volume VI: Brain
and Behavior (2013)
44. Northcutt, In the Light of Evolution
45. Lacalli, Thurston C. "Basic features of
the ancestral chordate brain: A protochordate perspective." Brain Research
Bulletin 75.2 (2008): 319-323.
46. Nicholas H. Putnam, et al., "The
amphioxus genome and the evolution of the chordate karyotype", Nature 453, 1064-1071 (19 June
2008) | doi:10.1038/nature06967
47. R. Glenn Northcutt, “Understanding Vertebrate
Brain Evolution” in Integrative and Comparative Biology, Volume 42, Issue 4,
pp. 743-756
48. Šestak, Martin Sebastijan, and Tomislav
Domazet-Lošo. "Phylostratigraphic Profiles in Zebrafish Uncover Chordate
Origins of the Vertebrate Brain." Molecular Biology and Evolution 32.2
(2015): 299-312.
49. Tomer, R., Denes, A., Tessmar-Raible, K.,
& Arendt, D. Profiling by Image Registration Reveals Common Origin of
Annelid Mushroom Bodies and Vertebrate Pallium. Cell, Volume 142, Issue 5, 800-809, 3 September 2010.
50. Wu, Qiang. "Comparative Genomics and
Diversifying Selection of the Clustered Vertebrate Protocadherin Genes."
Genetics 169.4 (2005)2179.
51. Caroline
B. Albertin, et al, "The octopus genome and
the evolution of cephalopod neural and morphological novelties". Nature, 524, 220–224 , 13 August 2015
52. Noonan, James P. et al. “Gene Conversion and
the Evolution of Protocadherin Gene Cluster Diversity.” Genome Research 14.3 (2004):
354–366. PMC. Web. 5 Nov.
2015.
53. Weisheng V. Chen, Tom Maniatis, Clustered
protocadherins. Development 2013 140: 3297-3302; doi: 10.1242/dev.090621.
54. Northcutt
55. Northcutt
56. Le Douarin, Nicole M, and Elisabeth Dupin.
"The neural crest in vertebrate evolution." Current Opinion in
Genetics & Development 22.4 (2012): 381-389.
57. Pierre Morell and Richard H Quarles,
"The Myelin Sheath" in
Basic Neurochemistry:
Molecular, Cellular and Medical Aspects. 6th edition.
58. Betty I. Roots, "The phylogeny of
invertebrates and the evolution of myelin" in
Neuron Glia Biology,
Volume 4, Issue 02, May 2008, pp 101-109
59. Luo, Liquan, Principles of Neurobiology, pp.
524-525
60. B. Zalc, "The acquisition of myelin: a
success story" in
Novartis Foundation
Symposia, 2006;276:15-21; discussion 21-5, 54-7, 275-81.
61. Marcus, Gary, The Birth of the Mind: How a
Tiny Number of Genes Creates the Complexities of Human Thought. New York:
Perseus Books, 2004, pp. 70-76
62. Marcus, pp. 118-145
63. Kaas, Jon H. "The evolution of brains
from early mammals to humans." Wiley Interdisciplinary Reviews: Cognitive
Science 4.1 (2013): 33-45.
64. Kaas
65. Kaas
66. Tanaka D., Nakajima K., GABAergic interneuron
migration and the evolution of the neocortex, in Development, Growth &
Differentiation, Volume 54, Issue 3, Article first published online: 24 April
2012
67. Jan H. Lui, David V. Hansen, and Arnold R.
Kriegstein, "Development and Evolution of the Human Neocortex" in
Cell, Volume 146, Issue 1, p 18–36, 8 July 2011
68. Eric Lewitus, Iva Kelava and Wieland B.
Huttner, "Conical expansion of the outer subventricular zone and the role
of neocortical folding in evolution and development", in
Frontiers of Human
Neuroscience, 1 August 2013.
69. Albert, Mareike, and Wieland B Huttner.
"Clever space saving—how the cerebral cortex folds." The EMBO Journal
34.14 (2015): 1845-1847.
70. Alfano, Christian, and Michèle Studer.
"Neocortical arealization: Evolution, mechanisms, and open
questions." Developmental Neurobiology 73.6 (2013): 411-447.
71. Vallender, Eric J. “Genetic Correlates of the
Evolving Primate Brain.” Progress
in brain research 195 (2012): 27–44. PMC. Web. 14 Dec. 2015.
72. Vallender
73. Vallender
74. Vallender
75. Montgomery, S. H., and N. I. Mundy. "Positive
selection on NIN , a gene involved in neurogenesis, and primate brain
evolution." Genes, Brain and Behavior 11.8 (2012): 903-910.
76. Smaers,
J. B., and C. Soligo. “Brain Reorganization, Not Relative Brain Size, Primarily
Characterizes Anthropoid Brain Evolution.” Proceedings of the Royal
Society B: Biological Sciences 280.1759 (2013): 20130269. PMC.
77. Smaers and Soligo.
78. Aboitiz, Francisco, and Montiel, Juan F.,
"From tetrapods to primates: Conserved developmental mechanisms in
diverging ecological adaptations" in Evolution of the Primate Brain, Volume 195:
From Neuron to Behavior (Progress in Brain Research) 1st Edition, edited by Michel A.
Hofman and Dean Falk. Elsevier Science,
2012.
79. Dunbar, Robin. "The Social Brain
Hypothesis and Its Implications for Social Evolution". Annals of Human Biology 08/2009;
36(5):562-72. DOI: 10.1080/03014460902960289
80. Dunbar
81. Dunbar, R.I.M, and Susanne Shultz.
“Understanding Primate Brain Evolution.”Philosophical Transactions of the
Royal Society B: Biological Sciences362.1480 (2007): 649–658. PMC.
82. Striedter, George F., Principles of Brain Evolution, p. 9
83. Striedter,
p. 9-11
84. Hofman,
Michel A., "Evolution of the human
brain: when bigger is better", in
Frontiers of Neuroanatomy, 27 March 2014
85. Hofman
86. Hofman
87. Angevine,
Jay B. , and Cotman, Carl W., Principles
of Neuroanatomy, 1st
Edition. Oxford University Press, 1981
88.
Peter Jonas and Gyorgy Buzsaki (2007)
"Neural inhibition". Scholarpedia,
2(9):3286.
89. Glendenning, K. K., "Thalamic
Inhibition in the Evolution of Human Intelligence: Evolutionary Pressure for
Cortical Inhibition". Mankind Quarterly, Summer 1998.
90. Spreafico, R., et al, "Interneurons in
the Mammalian Thalamus: A Marker of Species?" in Thalamic Networks for relay and Modulation: Pergamon Studies in
Neuroscience, edited by by Diego Minciacchi , Marco Molinari,
Giorgio Macchi. Pergamon Press, Oxford, UK, 1993
91. Ying-Wan Lam and S. Murray Sherman,
"Functional Organization of the Thalamic
Input to the Thalamic Reticular Nucleus". The Journal of
Neuroscience, 4 May 2011, 31(18): 6791-6799
92. Brian
Villmoare, William H. Kimbel, Chalachew Seyoum, Christopher J.
Campisano, Erin N. DiMaggio, John Rowan, David R. Braun, J
Ramón Arrowsmith, Kaye E. Reed. "Early Homo at 2.8
Ma from Ledi-Geraru, Afar, Ethiopia" in
Science 20 March 2015 : 1352-1355
93. "New species of extinct human found in
cave may rewrite history" in New
Scientist, 10 September 2015
94. Serralonga, Jordi, "The End of Myths and
Legends About the Biological and Cultural Evolution" in The Cambridge Handbook of Sociocultural
Psychology, 1st Edition, edited by Jaan Valsiner and Alberto Rosa, Cambridge University Press,
2007, pp. 192-194
95. Harmand, Sonia, et al., "3.3-million-year-old stone tools from Lomekwi 3, West
Turkana, Kenya" in Nature, 521,
310–315 (21 May 2015)
96. Dorus, Steve, et al, "Accelerated
Evolution of Nervous System Genes in the Origin of Homo sapiens". Cell,
Volume 119, Issue 7, 29 December 2004, Pages 1027–1040
97. Vallender,
Eric J., Nitzan Mekel-Bobrov, and Bruce T. Lahn. “Genetic Basis of Human Brain
Evolution.” Trends in neurosciences 31.12 (2008): 637–644.PMC.
Web. 28 Jan. 2016.
98. Vallender, et al.
99. Vallender, et al.
100.
Geschwind, Daniel H., and Genevieve Konopka. "Neuroscience Genes and human
brain evolution." Nature
486.7404 (2012): 481-482.
101.
Dennis, Megan Y. et al.
"Evolution of Human-Specific Neural SRGAP2 Genes by Incomplete Segmental
Duplication." Cell , Volume 149
, Issue 4 , 912 - 922.
102. Charrier, Cécile et al. "Inhibition of
SRGAP2 Function by Its Human-Specific Paralogs Induces Neoteny during Spine
Maturation". Cell, Volume 149 ,
Issue 4 , 923 - 935.
103. Hsun-Hua Chou, Toshiyuki Hayakawa, Sandra Diaz,
Matthias Krings, Etty Indriati, Meave
Leakey, Svante Paabo, Yoko Satta, Naoyuki Takahata, and Ajit Varki,
“Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to
brain expansion during human evolution” in PNAS,
August 21, 2002
104. National Academy of Sciences (US); Avise JC,
Ayala FJ, editors. In the Light of
Evolution: Volume IV: The Human Condition. Washington (DC): National
Academies Press (US); 2010. 6, Uniquely Human Evolution of Sialic Acid Genetics
and Biology. Available from: http://www.ncbi.nlm.nih.gov/books/NBK210017/
105. Varki, Ajit. "Loss of N-Glycolneuraminic
Acid in Humans: Mechanisms, Consequences, and Implications for Human
Evolution". Yearbook of Physical
Anthropology, 44:54-69 (2001).
106. Leonard, William R, Marcia L Robertson,
J.Josh Snodgrass, and Christopher W Kuzawa. "Metabolic correlates of
hominid brain evolution." Comparative Biochemistry and Physiology - Part
A: Molecular & Integrative Physiology 136.1 (2003): 5-15.
107. Roth, Gerhard and Ursula Dicke, "Evolution of the brain and intelligence". Trends in Cognitive Sciences Vol.9 No.5
May 2005
108. Branka Hrvoj-Mihic, Thibault Bienvenu, Lisa
Stefanacci, Alysson R. Muotri, and Katerina Semendeferi,
"Evolution,
development, and plasticity of the human brain: from molecules to bones". Frontiers of Human Neuroscience, 30
October 2013
109. Sherwood, Chet C., et al. "Evolution of
increased glia–neuron ratios in the human frontal cortex". PNAS,
September 12, 2006, Vol. 103, No. 37.
110. Allen, John S., The Lives of the Brain: Human Evolution and the Organ of Mind.
Cambridge MA: The Belknap Press of Harvard University Press, 2009, pp. 103-104
111. Kate Teffer and Katerina Semendeferi.
"Human prefrontal cortex: Evolution, development, and pathology".
Progress in Brain Research, Vol. 195, M. A. Hofman and D. Falk (Eds.) 2012
112. Barton, Robert A., and Chris Venditti.
"Rapid Evolution of the Cerebellum in Humans and Other Great Apes."
Current Biology 24.20 (2014): 2440-2444.
113. Teruo Hashimoto, et al, "Hand
before foot? Cortical somatotopy suggests manual dexterity is primitive and
evolved independently of bipedalism". Phil. Trans. R. Soc. B 2013 368
20120417; DOI: 10.1098/rstb.2012.0417. Published 7 October 2013
114. Drew, Bailey, and Geary David. "Hominid
Brain Evolution." Human Nature 20.1 (2009): 67-79.
115. Barrett, H. Clark. “A Hierarchical Model of
the Evolution of Human Brain Specializations.” Proceedings of the
National Academy of Sciences of the United States of America 109.Suppl
1 (2012): 10733–10740.
116. Geary, David C. The Origin of Mind: Evolution of Brain, Cognition, and General
Intelligence. Washington, D.C.: American Psychological Association, 2005,
p. 111
117. Geary, p. 85
118. Striedter, Georg F. Principles of Brain Evolution. Sunderland, MA: Sinauer Associates,
Inc., 2005, p. 319
119. Geary, pp. 72-77
120. Seung, Sebastian: Connectome: How the Brain's Wiring Makes Us Who We Are. Boston:
Houghton Mifflin Harcourt, 2012, pp. xiii-xiv, xviii
121. Seung, p. 68, pp. 81-82
122. Nicholas Toth and Kathy Schick.
"Hominin Brain Reorganization, Technological Change, and Cognitive
Complexity" in The Human Brain
Evolving: Paleoneurological Studies in Honor of Ralph Holloway, edited by
Douglas Broadfield, et al, p. 295.