Self-Organization and Emergence
The reason why higher-level subjects can be studied at all is that
under special circumstances the stupendously complex behaviour of vast numbers
of particles resolves itself into a measure of simplicity and
comprehensibility. This is called emergence: high-level simplicity ‘emerges’ from low-level complexity. High-level
phenomena about which there are comprehensible facts that are not simply
deducible from lower-level theories are called emergent phenomena. –David
Deutsch1
How has That Which Is manifested
itself? What are the most fundamental principles which it seems to have given
rise to, at least in this Universe? More broadly, what are the most basic rules
that seem, in our perspective, to govern the physical reality in which we find ourselves?
Everywhere there is decay and
disintegration. Everywhere, things seem to be heading toward entropy, toward
complete equilibrium. Everywhere, structure seems to break down into chaos. And
yet, the Universe is filled with structures, many of them extremely huge and
extremely ancient, containing innumerable other structures within them,
oftentimes structures of great complexity. How did this occur? Moreover, some
of these structures have gained the ability to replicate themselves and make
more structures, even, eventually, to evolve unanticipated structures. How is
this possible? What hidden realities are at work that make chaos resolve into
order—the exact opposite of what we might expect? There seem to be two
phenomena which, in the Universe we know and inhabit, govern the operation of
all things: self-organization and emergence. It is these phenomena which
seem to have given rise to every structured thing and organized process we know
of and observe, and it is these two phenomena which appear to have created the
increasingly ordered levels of physical reality that eventually gave rise to
our tiny and isolated species. In the opinion of an increasing number of
specialists, they are the great builders of the Universe. So how might they be
understood?
We need to first understand that
the classical method of examining nature by breaking its components into
smaller and smaller parts, a process known as reductionism, has been very successful at systematically describing
enormous numbers of naturally-occurring phenomena. But reductionism became a
sort of intellectual dead-end; it could describe the smallest parts of the
natural world, but it could not adequately explain the way these basic entities
had come together to form the elaborate structures we observe around us. Thus,
the sciences of complexity, self-organization, and emergence began to grow in
response to the need for such an explanation.
There is an extensive literature
on these matters—the number of papers, books, and articles in these fields has
increased tremendously in recent years—and there is by no means a complete
consensus among scientists with regard to the exact definitions of the terms
involved and the internal operations and characteristics of the phenomena being
described. To a layperson like me, the various disputes among these scholars
can be daunting in their complexity, to say the least. But there are research
findings I think I can present with some degree of confidence.
Self-Organization
By self-organization, we mean the
appearance of distinct patterns, processes, structures, or interactions without
the specific direction or intentionality of any outside source. As Francis
Heylighen of the University of Brussels
put it in a 1989 paper:
Self-organization may be defined as a spontaneous (i.e. not steered or
directed by an external system) process of organization, i.e. of the
development of an organized structure. The spontaneous creation of an
“organized whole” out of a “disordered” collection of interacting parts, as
witnessed in self-organizing systems in physics, chemistry, biology,[and]
sociology, is a basic part of
dynamical emergence.2
Heinz Pagels, who in the 1980s
wrote presciently about the ability of the computer to simulate and model
complex realities, put it this way, in remarking on the work of another
researcher, Charles Bennett:
A self-organizing system lowers its entropy (a measure of its degree of
disorganization) by expelling entropy into its environment and hence avoiding
deterioration. An example of a self-organizing system is the growth of a plant
or crystal. The point to be made about self-organizing systems is that first
they are indeed complex—highly organized—and
second they got that way by starting from a much simpler system.3
The concept of self-organization
is counter-intuitive, in some ways. It goes against much of our ordinary
experience, where things seem to fall apart and become disorganized. But, repeatedly, we observe examples of how order
arises with no outside influence. When energy
in some form passes through a set of particles/units/individual entities, there
seem to be definite patterns that emerge spontaneously. Examples would include
varieties of cloud formation, the emergence of bubble-like structures in
liquids that are heated, and a whole host of other effects that have been noted
by all the natural sciences. It is this tendency of things to create
spontaneous structure that allows for new structures to arise, structures which
in turn make possible the construction of bigger and yet more organized
structures, and so on. And although it would appear, according to several
researchers, that there can be self-organization in isolation, in other words,
without any ensuing emergence, (and emergence that is not brought on by
self-organization) it would further appear that self-organization and emergence
in combination largely produced the
physical reality and its various levels of organization we see all around
ourselves (in the human frame of reference).
In 2008, three physicists
expressed the concept of self-organization in this way:
…if we think of empty spacetime as some immaterial substance, consisting
of a very large number of minute, structureless pieces, and if we then let
these microscopic building blocks interact with one another according to
simple rules dictated by gravity and quantum theory, they will spontaneously
arrange themselves into a whole that in many ways looks like the observed
universe. It is similar to the way that molecules assemble themselves into
crystalline or amorphous solids…
Similar mechanisms of self-assembly and self-organization occur across
physics, biology and other fields of science. A beautiful example is the
behavior of large flocks of birds, such as European starlings. Individual birds
interact only with a small number of nearby birds; no leader tells them what to
do. Yet the flock still forms and moves as a whole. The flock possesses collective, or emergent, properties that are not obvious in each bird’s
behavior.4
The constant interaction of
particles in a given space or region creates a dynamical system, because those
particles can be in different states in relation to each other over time.
Self-organization involves the presence in a changing, dynamic system of attractors,
areas of the system that seem to “capture” the trajectories of particles or
keep other elements of the set close to them. Attractors exist in what are
known as basins of attraction,
regions of a system where attractors can exert their influence. The simplest
attractors seem to be point attractors
(or sometimes, fixed point attractors)
which allow for only one final position for any particles they attract (such as
a ball thrown into a jug or bowl which is inexorably drawn to the vessel’s
lowest point). Another example of how a fixed point attractor operates, one
given in many places in the literature, is the movement of a pendulum. The
pendulum comes to rest eventually because gravity and friction create a basin
of attraction that draws it into a resting state. Periodic attractors (or limit
cycle attractors) cause particles (however the term particle is defined) to
pass through different states on a regular basis. An object orbiting another
object in a mathematically ideal way would be exhibiting the influence of
periodic attractors. Particles drawn to periodic attractors are being affected
by some kind of regularly occurring energy or reaction. They are not held in a
fixed position, but they cannot operate in a purely random one. Strange attractors are points in a
system deeply affected by the initial state of a system. Any perturbation of
the system causes them to act in unpredictable ways. The greater the
disturbance, the more unpredictable the actions of these attractors become,
because any stimulus they receive is enormously amplified. Novel, unpredictable
states can arise quickly from such attractors. It was not until the development
of the computer that strange attractors, these odd, continuously moving points
that never return to the exact same place in a system, could be studied.
Fractal images generated by computers are examples of strange attractors in
action.5
Attractors are physical states in
a system, therefore, that particles tend to move toward, such as fixed points,
states where the particles can settle into some sort of equilibrium, or those
which can bring forth unpredictable new relationships and structures.
So how is self-organization
possible in an extremely complex system?
Physician and biologist Stuart
Kauffman, a member of the Santa Fe Institute, has done as much work as anyone
in the world on the natural processes that underlie complexity and
self-organization. In his 1995 book At
Home in the Universe, Kauffman calls the spontaneous emergence of self-organized
complexity “order for free”. He explains that depending on the initial state of
a system it will cycle in certain ways through its possible states, or state
spaces. If there are vast numbers of possible states a system can be in, it
will be necessary for attractors to draw in particle trajectories, in effect
forming subsystems within the larger system, and allowing these subsystems to
follow orderly patterns and establish a measure of stability, or homeostasis.
Not all systems eventually do this, and the ones that don’t end up descending
into chaos.6
The heart of Kauffman’s argument
lies in his examination of Boolean
networks, networks with components which can display only two possible
behaviors. To explain these networks, Kauffman uses the example of arrays of
light bulbs. He explains that a network of such bulbs can be ordered, chaotic,
or in a transitional state between order and chaos. The network of lights, when
operating, goes through what Kauffman describes as a state cycle, a pattern of
lights that might range from only one pattern (such as alternating on-lights
and off-lights) all the way to a state cycle exhibiting every conceivable state
that is possible within the network. With a small number of lights, going
through every possible state is easy. With increasing numbers of lights,
however, it becomes progressively more complicated.
The number of different states
the network can be in is governed by the number of lights in it. A single lone
light bulb can exhibit only 2 states, either on or off. Two lights can exhibit
four possible states (22) namely,
both on, both off, the first one on and the second one off, or the
second one on and the first one off. Three lights can exhibit eight possible
states (23), and so on. If we
keep adding one light to the network, it doesn't take long for the number of
possible states to grow very large. For example, a mere 20 lights can exhibit
1,048,576 different combinations (220). One hundred lights can
exhibit 1,267,650,600,228,229,401,496,703,205,376 states! (That’s over 1.2
novillion.) Some idea of the magnitude of this number can be gained this way:
if each of the possible 1.2 novillion+ light combinations manifested itself for
only one one-millionth of a second, it would take more than 2.9 million times
the estimated age of the Universe for each of them to be manifested.
There would have to be, in any
such system of lights, a way of controlling whether each individual light was
on or off. There would be a system of “inputs” for each bulb, connections to
other bulbs and/or to itself. In a
network where each light had 4 or 5 random inputs, the network would be
unpredictable and chaotic, going through its state cycles in extremely long
sequences, even accounting for the presence of attractors that might give it
some organization, and highly vulnerable to any outside disturbances of its
operation. But if each bulb were only controlled by one or two others, and each
bulb could only be on or off, order would spring into existence regardless of
the size of the network and how many states (patterns of lights either lit or not lit) it could
display. Kauffman discovered something utterly amazing. Even in a system of
100,000 lights, which has 2100,000 possible combinations, if each
light controls only itself and one other random light (2 inputs per light), the
system will fall into a mere 317 different state cycles out of all the enormous
number of possible cycles it could go through. (And 317 is about the square
root of 100,000.) The conclusion is compelling: Given the right initial
conditions and interactions, order can arise spontaneously in even the largest
arrangement of entities, without any outside intervention and without any
intentionality.7
Scientists are also investigating
the phenomenon of self-organized
criticality, a hypothesis most associated with the late Danish physicist
Per Bak. The idea behind it is typically illustrated by picturing grains of
sand being dropped on to a surface. The pile of sand that results can only grow
so high before it begins to exhibit a characteristic shape and a structure that
produces avalanches of various sizes if additional sand is added to it. The
pile is self-organized in the sense that no one has to shape it. In fact, it
spontaneously forms substructures of various kinds. And it is in a state of
criticality because it is unstable and the results of adding more sand to it
are unpredictable. Will adding more sand cause a minor avalanche or a
catastrophic one? Bak saw the sand pile’s structure and behavior as a metaphor
for all kinds of processes in the physical world that are driven to
self-organization and instability by the constant addition of some crucial
component. In the words of M. Mitchell Waldrop,
a steady input of energy or water or electrons drives a great many
systems in nature to organize themselves in the same way. They become a mass of
intricately interlocking subsystems just barely on the edge of criticality—with
breakdowns of all sizes ripping through and rearranging things just often
enough to keep them poised on the edge.8
It would appear, therefore, that
not only is it possible for structures in nature to self-organize, it is rather
common for them to do so. The means by which this happens are still being
elucidated and debated over, but that it does
happen can no longer be doubted. It is this tendency of nature to
self-organize, to create structures and substructures which are mathematically
describable, and to create spontaneous networks of interlocking and interacting
components that allows for the existence of emergence—the appearance of a new
“level” of reality.
Emergence
How do the professionals
researching emergence define its properties? The question is still being investigated
intensely, but some consensus now seems to be developing.
In a study entitled Causality, Emergence, Self-Organisation,
published in 2003, the editors of the study, Vladimir Arshinov and Christian
Fuchs, prefaced the book with a summary of what they believe to be the
principal characteristics of emergence. They are: synergism, the
interaction between two or more entities in a “co-operative” manner; novelty,
the emergence of previously unobserved qualities; irreducibility, meaning
that the process cannot be reversed to create the same entities that produced
it; unpredictability,
the creation of an unanticipated result; coherence/correlation, meaning that the
emergent phenomenon creates a unity that encompasses its sources; and historicity, meaning that emergent phenomena are
not pre-ordained.9
Tom De Wolf and Tom Holvoet of the Catholic University of Leuven, in
Belgium, did an extensive review in 2005 of the literature concerning
emergence. They concluded that genuine emergence has the following
characteristics: Micro-macro effect. The behaviors and properties of the
emergent system are a result of the interaction of the entities within it. This
is considered by almost all researchers to be the essential feature of an
emergent system. Radical novelty. The emergent entity cannot be something that
would be anticipated by examining the parts of the system in isolation. Coherence.
The organization maintains itself over time. Interacting parts. Parts
existing in parallel to each other are not sufficient, and cannot produce
emergence. Dynamical. The emergent system materializes over time because
of new attractors in the interacting system that produces it. Decentralized
control. No individual part
controls the whole system. Two-way link. The interacting parts
give rise to the new system. The new system in turn affects its parts. Robustness
and flexibility. The overall emergent structure is less sensitive to
disturbance or destruction than any
single entity within it, and can maintain itself even if it sustains some
damage.10
So the essence of emergence
appears to be an interaction of elements that brings about an unanticipated,
unpredictable outcome, an outcome that can only
exist in the presence of this interaction. (See the chapters Synergy and Feedback Loops and Chains of Unanticipated Consequences in
this section of the book for more elaboration on these points.) The emergent system in turn creates a new
interactive dynamic that can set the stage for a still higher level of
organization. This process does not need any conscious direction and its
ultimate result—if there is an ultimate result—will be the sum of all of the
unpredictable outcomes generated at every level of the emergent process.
What might stimulate this
process? In Robert Hazen’s 2005 study on the origin of life, he identified what
he sees to be the factors contributing to the emergence of complex patterning: Concentration
of agents. By this Hazen means that there must be sufficient numbers of
units (grains of sand, stars, neurons) in close proximity to each other. “Below
a critical threshold, no patterns are seen.” Interconnectivity of agents.
The more numerous and complex the interactions of individual entities, the
greater the chance of emergent phenomena. Energy flow through the system. “The
emergence of complex patterns evidently requires energy flow within rather
restrictive limits: Too little flow and nothing happens; too much flow and the
system is randomized—entropy triumphs.” Cycling of energy flow. Periodic
fluctuations in energy and the presence of periodic cycles of change seem to have a dramatic effect on
emergence.11 So emergence
seems to involve the effect of energy passing through a system of densely
concentrated and closely interacting particles in a particular way, with the
term “particle” defined very broadly. As we go backward in time or downward in
scale, the interactions between particles (of various sizes and complexities)
is less organized and more and more subject to purely stochastic processes.
The implications of all this are
enormous. Nobel laureate Robert B. Laughlin, in discussing the effect the
growing study of emergence is having on the sciences, observes that there is a
great deal of resistance in the scientific community to abandoning reductionist
ideas and embracing emergent ones. Nonetheless, he contends that emergence is
such a powerful and useful concept that it will come to dominate humanity’s
study of nature, alter our perception of what mathematics is capable of, and
usher in what he calls The Age of Emergence, the era when our view of reality
is defined by what he calls “the higher organizational laws of the world”.12
If Professor Laughlin is right, then we will come to see the presence of
emergent phenomena not just in the sciences but in every area of existence,
including an explanation of the emergence of human society and culture.
Personal Conclusions
So what do I conclude from all of
this? Here are my hypotheses, based on my (limited) understanding of these
phenomena:
First, self-organization and
emergence seem to be evolutionary and self-perpetuating in nature.
Self-organization (usually) causes emergent phenomena to come into being.
Various and diverse emergent phenomena can
in turn self-organize to produce a new, larger, more comprehensive emergent phenomenon. Where this process will
end cannot, by its very nature, be predicted. Each level of reality is more and
more unexpected; the cumulative effect of all these levels, one “on top” of the
other, is the least predictable thing of all in the process. As individual
phenomena emerge into the next level of organization, they become subsumed
within it. These phenomena are harnessed, so to speak, and become part of an
integrated system.
At every level of physical
reality, particles tend to link up with other particles because they are drawn
together by distinct areas of space-time. (Could we say that they are simply
following the path of least resistance?) This linking up becomes more complex
as the levels of physical organization become more elaborate. At the highest
level of organization—human society—so many variables are at work in this
linking process that the effects become more and more unexpected.
It is difficult to see how basic
physical interactions can directly
lead to the emergence of life. The emergence of chemical principles seems to be
a necessary intermediate step. The transition from basic physical particles to
human society required a great many intermediate steps.
The micro brings forth the macro;
increasing amounts of energy are required to reduce the macro at various levels
to the micro. As Timothy Ferris has pointed out, enormous energies are required
to tear matter down to its most fundamental levels, energies that more and more
approximate those which must have existed at the time of the Big Bang. It would
be quite possible, for example, to destroy a complex structure by breaking it
apart into small pieces. But breaking it into its constituent molecules would
require much more energy, breaking it into its atoms would require an enormous
amount of energy, and breaking it into its quarks and leptons would require an
inconceivable amount of energy. The end results of emergence are not
necessarily permanent; emergent phenomena can be undone, but doing so requires
undoing a great many steps and the marshaling of energies that are not easily
acquired.
When we reach down to the most
fundamental level of physical reality, using reductionist methods, there seems
to be nothing but chaos. Emergence theory allows us to account for the order we
find at various levels higher than the chaotic, basic level of physicality.
Emergence theory therefore puts the reductionistic view in a new perspective.
No longer is reductionism simply a descent into chaos; it becomes a descent
into origins.
Using reductionistic methods in
combination with the emergent perspective allows us to trace our story backward
through time, starting with the “highest” level (that is to say, the level that is the ultimate result of all the
preceding emergent levels) and ending up at the most fundamental level of
physical reality, the point at which we can go back no further. We would therefore start with the human
cultural and social worlds, their intricate rules and interrelationships, and
all the “structures” which are no more than approximately understood common
ideas held in the neurons of human brains. We would trace the emergence of
human society and culture to consciousness, which is less organized and more
random than the social and cultural worlds. We trace the origin of
consciousness to the evolution of a particular kind of brain, noting that the
steps that led to the biological evolution of higher-order nervous systems were
more random than the ordered functions of the brain produced by these steps. We
see that the evolution of the brain was an emergent result of the general evolution
of multicelled beings, which was a broader, less defined, less organized
phenomenon than the emergence of highly advanced collections of neurons. The
evolution of multicelled beings emerged from the relatively more chaotic world
of one-celled organisms. These one-celled organisms were in turn brought about
by the emergence of nucleic-acid based life existing without membranes, brought
about by the interactions of molecules built around carbon atoms. These molecules
were themselves the product of a long chain of basic, evolving, self-reproducing
chemical units (perhaps preceded by simple metabolic processes) which existed
in a highly chaotic state of seemingly random movement, and which began to
undergo changes because of the interaction between their own replication errors
and changes in the physical environments in which they existed. The atoms which
came together to form these molecules were in turn assembled and held together
by fundamental particles, which in turn were the product of the emergence of
the four fundamental forces of nature at the first moments of the Universe’s
existence.
Every level of organization is
both more coherent and more information-dense at the same time. Every level of
organization contains all the information of all the levels from which it
emerged. In one perspective, reality can simply be seen as the generation,
transference, accumulation, and aggregation of information.
Is the social organization
created by human consciousness the ultimate stochastic dynamical system,
because of the number of possible outcomes or actions of the “particles”? When
a “particle” knows that it is a particle, and that it is possible do things
that are not pre-determined, does that create a unique form of dynamical
system?
Not all areas of the Universe
have been resolved into order. There are still areas, for example, where the
basic level of physical reality is the only
one, and nothing has emerged from it. Other areas have gotten no farther than
basic chemistry; others no farther than basic biology. The ways of life and
social interaction created by the human species involve an extraordinary—and
quite possibly, very rare—number of emergences “stacked up” on each other. And
there would have been no conceivable way of predicting that the randomly
interacting quarks that came into being moments after the Universe’s beginning
would ultimately bring forth human society and culture.
Self-organization and emergence have produced certain fixed
regularities in the operation of physical reality. In the human perspective,
these regularities appear to take a particular form:
They are called the laws of nature. So now we turn to them.
1. Deutsch, David, The Fabric of Reality, pp. 20-21
2. F. Heylighen, "Self-Organization, Emergence and the
Architecture of Complexity", in:
Proceedings of the 1st European
Conference on System Science, (AFCET,
Paris), p. 23-32., 1989
3. Pagels, Heinz, The Dreams of Reason, pp. 65-66
4. Jan Ambjørn, Jerzy Jurkiewicz, and Renate
Loll, “The Self-Organizing Quantum Universe”, in Scientific American, July 2008
5. Kauffman, Stuart, At Home in the Universe: The Search for the Laws of Self-Organization
and Complexity, pp. 79-110
6. Kauffman, pp. 74-79
7. Kaufmann, pp. 77-83
8. Waldrop, M. Mitchell, Complexity: The Emerging Science at the Edge of Order and Chaos,
pp. 304-306
9. Arshinov, Vladimir, and Fuchs, Christian,
editors. Causality, Emergence, Self-Organization,
pp. 5-8
10. Tom De Wolf, , and Tom
Holvoet, “Emergence Versus Self-Organisation: Different Concepts but Promising When Combined”, Department of Computer Science, Kuleuven,
Celestijnenlaan Leuven, Belgium, 2005
11. Hazen, Robert, Genesis: The Scientific Quest for Life's
Origins, pp. 17-22
12. Laughlin, Robert B., A Different Universe: Reinventing Physics
from the Bottom Down, pp. 173-221